Implementasi Teknik Sampling untuk Mengatasi Imbalanced Data pada Penentuan Status Gizi Balita dengan Menggunakan Learning Vector Quantization
Main Article Content
Abstract
Balita memerlukan suatu pengawasan khusus karena pada masa-masa tersebut balita rentan terhadap serangan penyakit dan kekurangan gizi. Untuk itu penelitian ini bertujuan untuk menerapkan metode Learning Vector Quantization (LVQ) dalam proses klasifikasi status gizi balita ke dalam gizi lebih, gizi baik, gizi rentan, dan gizi kurang. Data yang digunakan dalam penelitian ini adalah data gizi balita sebanyak 612, terdiri dari 38 data gizi lebih, 491 data gizi baik, 63 gizi rentan, dan 20 data gizi kurang. Data tersebut disebut sebagai data tidak seimbang. Selanjutnya, penelitian ini menerapkan teknik undersampling dan oversampling untuk mengatasi permasalahan tersebut. Hasil penelitian menunjukkan bahwa penerapan metode LVQ terhadap data tak seimbang menghasilkan nilai akurasi sebesar 84.15 %, tetapi nilai overall accuracy sebesar 43.27%. Sedangkan penerapan metode LVQ terhadap data yang seimbang menghasilkan nilai akurasi dan overall accuracy yang sama yakni sebesar 74.38%.
Article Details
Authors who publish with this journal agree to the following terms:
- Author (s) hold copyrights and retain copyrights of articles if the article is accepted for publishing.
- The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material are distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Public allowed to Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material) this journal article content.
References
Anggraeni, R., & Indrarti, A. (2010). Klasifikasi Status Gizi Balita Berdasarkan Indeks Antropometri Menggunakan Jaringan Syaraf Tiruan. In Prosiding Seminar Nasional Teknologi Informasi 2010 (SNASTI 2010) (p. ICCS-14 s/d ICCS 18). Surabaya.
Chawla, N. V. (2005). Data Mining for Imbalanced Datasets: An Overview. In Data Mining and Knowledge Discovery Handbook (pp. 853–867).
Chawla, N. V, Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE : Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321–357.
Dharmawan, D. A. (2014). Deteksi kanker serviks otomatis berbasis Jaringan Saraf Tiruan LVQ dan DCT. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi (JNTETI), 3(4), 269–272.
Fitri, Setyawati, O., & S, D. R. (2013). Aplikasi jaringan syaraf tiruan untuk penentuan status gizi balita dan rekomendasi menu makanan yang dibutuhkan. Jurnal EECCIS, 7(2), 119–124.
Hatmojo, Y. I. (2014). Implementasi Wavelet Haar dan Jaringan Tiruan Pada Pengenalan Pola Selaput Pelangi Mata. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi (JNTETI), 3(1), 58–62.
Haykin, S. (2008). Neural Networks and Learning Machines. New Jersey: Prentice Hall.
Khairani, M. (2014). Improvisasi Backpropagation menggunakan penerapan adaptive learning rate dan parallel training. TECHSI -
Jurnal Penelitian Teknik Informatika, 4(1), 157–172.
Muaris, H. (2006). Sarapan Sehat untuk Anak Balita (PT Gramedi). Jakarta.
Wan, X., Liu, J., Cheung, W. K., & Tong, T. (2014). Learning to improve medical decision making from imbalanced data without a priori cost. BMC Medical Informatics and Decision Making, 14(111), 1–9. https://doi.org/10.1186/s12911-014-0111-9
Wankhede, S. B. (2014). Analytical Study of Neural Network Techniques : SOM , MLP and Classifier-A Survey. IOSR Journal of Computer Engineering, 16(3), 86–92.
Wuryandari, M. D., & Afrianto, I. (2012). Perbandingan Metode Jaringan Syaraf Tiruan Backpropagation dan Learning Vector Quantization pada Pengenalan Wajah. Jurnal Komputer Dan Informatika, 1, 45–51.
Yen, S.-J., & Lee, Y.-S. (2009). Cluster-based under-sampling approaches for imbalanced data distributions. Expert Systems with Applications, 36(3), 5718–5727. https://doi.org/10.1016/j.eswa.2008.06.108