IMPLEMENTATION OF K-MEANS CLUSTERING ALGORITHM TO ANALYZE THE FAMILIAL SENTIMENTS TOWARDS COVID-19 VACCINATION FOR ELEMENTARY SCHOOL STUDENTS IN KALAWAT DISTRICT

Indah Kairupan¹, Liza Wikarsa², Audreyvia G. C. A Kembuan³

¹,²,³Universitas Katolik De La Salle Manado
ikairupan@unikadelasalle.ac.id, lwikarsa@unikadelasalle.ac.id, 18013011@unikadelasalle.ac.id

Abstract— Due to the Ministry of Health's policy, the Indonesian government mandates the public to receive the COVID-19 vaccination as a form of immunity against the Coronavirus. This vaccination is not only for adults but also for children of a certain age. Regarding the provision of vaccination for elementary school students aged between 6 to 11 years, the families' responses to this predicament can cause significant barriers to those students being fully vaccinated. Thus, this research developed a web-based application that incorporated the K-means clustering method to group the sentiments of the families into three clusters, namely positive, neutral, and negative. The results show that the application can identify and cluster the different familial responses from 279 respondents in Kalawat District toward the administration of COVID-19 vaccination to their underage children. The most dominant familial sentiment is positive followed by neutral and negative sentiments with the number of respondents as many as 120 respondents (43%), 113 respondents (41%), and 46 respondents (16%) respectively. This research can help the Health Office in North Minahasa Regency to evaluate public sentiments about vaccination for elementary school students as well as look for better ways to encourage vaccine trust and confidence in this district.

Keywords: Clustering; COVID-19; K-Means; Vaccination.

I. INTRODUCTION

COVID-19 vaccination in Indonesia began on May 7, 2021, marked by the issuance of a regulation from the Minister of Health. Due to the rapid spread of the COVID-19 virus which can attack anyone, the government is trying to prevent the spread of the virus by vaccinating [1]. Vaccination is carried out by entering the inactive SARS-CoV-2 virus so that the immune system can recognize the virus and produce antibodies that can prevent infection caused by the COVID-19 virus [2], [3]. With this vaccination effort, it is hoped that herd immunity will be formed so that the COVID-19 pandemic in Indonesia ends soon [1].

The Minister of Health again issued a regulation on December 13, 2021, regarding the provision of vaccinations to 26.5 million children aged 6 to 11 years [2]. With the start of the vaccination process for elementary school students, various responses emerged from families who have children aged 6 to 11 years [4]. There are concerns about the appropriateness of the vaccine to be used and the post-vaccination risks [5], [6]. Hence, the familial responses affect the administration of vaccination for these elementary school students and therefore it is necessary to know the familial sentiments.

Sentiment analysis is a computational detector, of opinion, sentiment, response, and subjectivity in a text [7]. Using sentiment analysis methods, several previous studies have tried to identify parents' responses to the mandatory COVID-19 vaccination of elementary school students, including the causes of COVID-19 vaccination and its implementation system. However, these studies only focused on one school so generalizations cannot be made about the acceptance of this vaccination on a larger scale [4-6]. In this regard, this research aims to identify the familial sentiments towards the administration of COVID-19 vaccination to students in 14 elementary schools in Kalawat district using the K-means clustering. By doing this research, it can
provide relevant perception and concerns of the families with regard to the matter in question.

K-means clustering is one of the data mining algorithms for unsupervised learning that has been widely used in various studies [8]-[11]. The study entitled Clustering of Vaccination Reception in Central Java Using the K-Means Method [12] classified vaccine acceptance in Central Java into 2 clusters. Cluster 1 was an area with low acceptance and Cluster 2 with high acceptance [12]. Cluster 1 consisted of 5 regions and Cluster 2 had 30 regions with the highest number of vaccination receipts. The second study was obtained from the journal Clinical Practice [9] which had 1,035 respondents. Yet, there were only 659 respondents who expressed their unwillingness to be vaccinated due to the confidence and trust issues regarding the administration of COVID-19 vaccinations to children [9]. The third study also used the K-means clustering algorithm to group the 900 recipients of the COVID-19 vaccination in Bengkulu city [11]. There are 2 types of vaccines given, namely AstraZeneca and Sinovac. The K-means clustering algorithm is used to classify the availability of vaccine stocks for the residents at the appointed health centers [13].

This research will group the responses from parents regarding the administration of COVID-19 vaccination to elementary students in 14 schools in Kalawat District with a population of 1,440 students. The number of respondents obtained using the Isaac and Michael sampling technique [11] with a 5% significance level was 279 respondents. The seven attributes used in this research are the enthusiasm for vaccines, the importance of vaccination, the level of knowledge, the environmental support, the school requirement for vaccinations, and the level of trust. Sentiments will be grouped into three, namely positive, neutral, and negative sentiments [4], [14] using the K-means clustering algorithm [10], [13]. Based on the description above, this study aims to determine the familial responses regarded the administration of COVID-19 vaccination to students aged between 6 and 11 years old and then group those sentiments into three clusters, namely positive, neutral, and negative sentiments. The research results can be used by the Health Office in North Minahasa Regency as an insight to make better health and safety policies to further encourage vaccine trust and confidence for families with underage children.

The rest of this article is organized as follows. Section 1 will address the research background to understand the main context of this study. Section 2 discusses the related works and research methods. Section 3 shows the research results and discussion. Section 4 provides the conclusion and future work.

II. Method

The development framework used in the current study is divided into four stages, namely the data collection stage, the pre-processing stage, the processing stage, and the post-processing stage, as seen in Fig. 1.

![Research Framework K-Means](image)

A. Stage I: Data Collection

This stage is the stage of distributing questionnaires to the families of elementary school students in the Kalawat district. The number of data or respondents will be determined by the formula for determining the number of samples, namely Table Isaac and Michael with a significance level of 0.05. The collection of questionnaires aims to obtain the value of each variable which will later be used in the application of the K-Means method [15], [16].

The data used were 279 parental responses to giving COVID-19 vaccinations to elementary school students with an age range of 6-11 years [17], [18]. Questionnaires were distributed twice in this study, where the first questionnaire was distributed to identify the independent variables. The second questionnaire to dig deeper related to the independent variables that have been obtained.
from the first questionnaire. The results of the second questionnaire are indicators for each of these independent variables.

B. Stage II: Pre-processing
Several statistical tests will be applied to the questionnaire data collection. It is useful for testing the hypotheses involving population parameters. Pearson's formula will be used for data validity and correlation. In addition, the reliability test will use Cronbach's Alpha formula and the T-test.

C. Stage III: Processing
After passing through the pre-processing stage, data collection will be carried out. The K-means clustering algorithm is embedded in the application so that the clustering process is carried out through the application to be built. K-means is one of the data mining methods to perform the unsupervised learning data modeling process and uses the data grouping method of various partitions [10]. The objective of K-Means serves to minimize the function of objects that have been set in the grouping process. The following are the steps of the K-means clustering algorithm [10]:
1. The number of clusters is determined.
2. The initial centroid value is determined by taking the average value of each variable.
3. The Euclidean formula is used to calculate the distance for each data based on the shortest distance between the data and the centroid value.

\[d(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \]

Note:
\(d \) = distance between x and y
\(x \) = data attribute
\(y \) = cluster center data
\(i \) = each data
\(n \) = number of data
\(x_i \) = data on each data to \(i \)
\(y_i \) = data at the center of the cluster to \(i \)
4. Data that has the closest distance to the centroid value must be grouped.
5. A new centroid/center value is defined.

\[\text{min} \sum_{k}^{t} a_{ik} = \sqrt{\sum_{j}^{m} (c_{j} - c_{kj})^2} \]

6. Recalculate by repeating steps 3 to 5.
7. Grouping will be declared complete if there is no more data moving clusters/groups. However, if it is still found that something is moving, the third step must be repeated until no more data is transferred.

D. Stage IV: Validation
The validation stage is the final stage which will display the results of grouping the three sentiment clusters namely positive, neutral, and negative. Visual displays in the form of tables and graphs will be presented to display the number of people in the cluster.

III. RESULT AND DISCUSSION

A. Analysis
This study adopted a system rapid application development with four stages that are analysis, design, implementation, and testing. This analysis contains data collection and processing, problem identification, target user analysis, requirements specifications, and K-means clustering algorithm analysis.

1. Data Collection
Data on the familial responses to the COVID-19 vaccination was collected to get the percentage of what actions were deemed necessary by the respondents. The first questionnaire was to identify the independent variables, the second questionnaire was to dig deeper into the independent variables that have been obtained from the first questionnaire. In this questionnaire, there were 7 variables used (shown in Table I), such as enthusiasm [19], how important is vaccination? knowledge level [20], support from the environment [21], vaccinations to enter school [23], reduce COVID-19 cases [22], belief in vaccination [24], [25].

2. Pre-Processing
At this stage, validity, reliability, and t-test tests will be carried out on the questionnaire [23]. The test results can be seen in Table II.
TABLE I
Research Variables and Indicators

<table>
<thead>
<tr>
<th>Variable</th>
<th>Indicator</th>
<th>Initial (%)</th>
<th>Final (%)</th>
<th>Variable Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>Enthusiastic</td>
<td>74.3</td>
<td>14.4</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>How important is Vaccination?</td>
<td>73.3</td>
<td>14.3</td>
<td></td>
</tr>
<tr>
<td>Knowledge</td>
<td>level</td>
<td>73.5</td>
<td>14.3</td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td>Support from the Environment</td>
<td>73</td>
<td>14.2</td>
<td>42.8</td>
</tr>
<tr>
<td>Vaccinations</td>
<td>to Enter School</td>
<td>74.6</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td>Reduce</td>
<td>COVID-19 Cases</td>
<td>72.7</td>
<td>14.2</td>
<td></td>
</tr>
<tr>
<td>Trust</td>
<td>Belief in Vaccination</td>
<td>72.7</td>
<td>14.2</td>
<td>14.2</td>
</tr>
</tbody>
</table>

TABLE II
Questionnaire Validity and Correlation Test

<table>
<thead>
<tr>
<th>Item Code</th>
<th>r_{count}</th>
<th>r_{table}</th>
<th>Significance</th>
<th>Validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>0.880**</td>
<td>0.113</td>
<td><0.001</td>
<td>Valid</td>
</tr>
<tr>
<td>Q2</td>
<td>0.914*</td>
<td>0.113</td>
<td>0.018</td>
<td>Valid</td>
</tr>
<tr>
<td>Q3</td>
<td>0.910**</td>
<td>0.113</td>
<td>0.002</td>
<td>Valid</td>
</tr>
<tr>
<td>Q4</td>
<td>0.902**</td>
<td>0.113</td>
<td><0.001</td>
<td>Valid</td>
</tr>
<tr>
<td>Q5</td>
<td>0.927**</td>
<td>0.113</td>
<td>0.001</td>
<td>Valid</td>
</tr>
<tr>
<td>Q6</td>
<td>0.936**</td>
<td>0.113</td>
<td><0.001</td>
<td>Valid</td>
</tr>
<tr>
<td>Q7</td>
<td>0.937**</td>
<td>0.113</td>
<td><0.001</td>
<td>Valid</td>
</tr>
</tbody>
</table>

The data will be considered valid if the value of r_{count} exceeds the number of r-table. The number of respondents will determine the value of the r-table. The validity test in Table III shows the calculated r-value of the seven items in the questionnaire where the significance value is bigger than 0.001. The calculated r-value is greater than r-table for each item, namely 0.113, therefore it is known that the correlation value of each variable is connected, and it can be concluded that the tested variables correlate. The reliability test for the research instrument is shown in Table III.

TABLE III
Reliability Test

<table>
<thead>
<tr>
<th>Cronbach's Alpha</th>
<th>Items Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.968</td>
<td>7</td>
</tr>
</tbody>
</table>

3. Processing

The following is an analysis of the application of the K-means method to cluster the familial responses toward the administration of COVID-19 vaccinations to elementary school students in the Kalawat district. The training data used 5 data and the iteration process obtained as many as 2 iterations. Also, one needed to prepare the dataset before use as elaborated below.

a. Scores were obtained from the collection of questionnaires about the administration of giving COVID-19 vaccinations to elementary school students aged between 6-11 years.

TABLE IV
T-test

<table>
<thead>
<tr>
<th>Item Code</th>
<th>T_{Result}</th>
<th>T_{Table}</th>
<th>Acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge Level</td>
<td>3.72</td>
<td>1.968565</td>
<td>Accepted</td>
</tr>
<tr>
<td>Reduce COVID-19 Cases</td>
<td>3.67</td>
<td>1.968565</td>
<td>Accepted</td>
</tr>
<tr>
<td>Enthusiastic</td>
<td>3.68</td>
<td>1.968565</td>
<td>Accepted</td>
</tr>
<tr>
<td>How important is Vaccination?</td>
<td>3.66</td>
<td>1.968565</td>
<td>Accepted</td>
</tr>
<tr>
<td>Belief in Vaccination</td>
<td>3.73</td>
<td>1.968565</td>
<td>Accepted</td>
</tr>
<tr>
<td>Support from the Environment</td>
<td>3.64</td>
<td>1.968565</td>
<td>Accepted</td>
</tr>
<tr>
<td>Vaccinations to Enter School</td>
<td>3.65</td>
<td>1.968565</td>
<td>Accepted</td>
</tr>
</tbody>
</table>

b. In Table I, the level of importance of the action will be multiplied by the value of the action obtained from the respondents.

c. In Table VI, the average value is obtained from the sum of the items included in the same
variable or type of indicator which is then divided by three.

TABLE VI

<table>
<thead>
<tr>
<th>Id Respondent</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td></td>
</tr>
</tbody>
</table>

Age	10
Gender	Male
Knowledge level	5
Reduce COVID-19 Cases	4
Enthusiastic	5
How important is Vaccination?	4
Belief in Vaccination	5
Support from the Environment	4
Vaccinations to Enter School	5

The amount of data processed is 279 data. Applications can only read input data in the form of a CSV extension, therefore, after it has been successfully processed, the input data will be stored in the CSV extension type so that the application can read it.

e. The implementation of K-means followed the steps:

1) Determine the number of clusters.
 There are 3 sentiment clusters such as positive (C1), neutral (C2), and negative (C3).

2) Determine the initial centroid/center value randomly.
 The initial centroid has an important role in determining the final result of the grouping. This stage will calculate the average value of the overall score of the questionnaire, the average value will be used as a reference to code labels on each respondent's data.

TABLE VII

<table>
<thead>
<tr>
<th>Result</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1.1</td>
<td>2.645</td>
</tr>
<tr>
<td>Q1.2</td>
<td>2.828</td>
</tr>
<tr>
<td>Q1.3</td>
<td>6.633</td>
</tr>
<tr>
<td>Q3.1</td>
<td>4,358</td>
</tr>
<tr>
<td>Q3.2</td>
<td>0</td>
</tr>
<tr>
<td>Q3.3</td>
<td>4</td>
</tr>
<tr>
<td>Q4.1</td>
<td>4</td>
</tr>
<tr>
<td>Q4.2</td>
<td>1</td>
</tr>
</tbody>
</table>

The Euclidean distance formula is used to calculate the distance for each data group based on the closest distance to the centroid value.

4) Data that is close to the centroid value will be grouped.

5) The new centroid value is determined.

6) Repeat steps C to D to calculate the distance from each data.

7) Grouping will be declared complete if there are no more data-moving clusters. However, if there is still data that has moved, then step C will be repeated until you get the same data grouping results as the previous iteration.

Below is an excerpt of the manual calculation.

\[
d(1,1) = \sqrt{(5 - 5)^2 + (4 - 4)^2 + (3 - 5)^2 + (3 - 5)^2 + (4 - 4)^2 + (4 - 5)^2} = 2.645
\]

\[
d(1,2) = \sqrt{(5 - 3)^2 + (4 - 3)^2 + (3 - 3)^2 + (3 - 3)^2 + (4 - 3)^2 + (4 - 3)^2} = 2.828
\]

\[
d(1,3) = \sqrt{(5 - 1)^2 + (4 - 1)^2 + (3 - 2)^2 + (3 - 2)^2 + (4 - 1)^2 + (4 - 2)^2} = 6.633
\]

\[
d(2,1) = \sqrt{(4 - 5)^2 + (5 - 4)^2 + (4 - 4)^2 + (4 - 5)^2 + (4 - 5)^2 + (4 - 5)^2} = 2.645
\]

\[
d(2,2) = \sqrt{(4 - 3)^2 + (5 - 3)^2 + (4 - 3)^2 + (4 - 3)^2 + (4 - 3)^2 + (4 - 3)^2} = 7.874
\]

\[
d(3,1) = \sqrt{(3 - 5)^2 + (3 - 4)^2 + (3 - 4)^2 + (3 - 4)^2 + (3 - 4)^2 + (3 - 4)^2} = 4.358
\]

\[
d(3,2) = \sqrt{(3 - 3)^2 + (3 - 3)^2 + (3 - 3)^2 + (3 - 3)^2 + (3 - 3)^2 + (3 - 3)^2} = 0
\]

\[
d(3,3) = \sqrt{(3 - 1)^2 + (3 - 1)^2 + (3 - 1)^2 + (3 - 1)^2 + (3 - 1)^2 + (3 - 1)^2} = 4
\]

\[
d(4,1) = \sqrt{(3 - 5)^2 + (3 - 4)^2 + (3 - 5)^2 + (4 - 5)^2 + (3 - 4)^2 + (3 - 5)^2} = 4
\]

\[
d(4,2) = \sqrt{(3 - 3)^2 + (3 - 3)^2 + (3 - 3)^2 + (3 - 3)^2 + (4 - 3)^2 + (3 - 3)^2} = 1
\]

\[
d(4,3) = \sqrt{(3 - 1)^2 + (3 - 1)^2 + (3 - 1)^2 + (3 - 1)^2 + (3 - 1)^2 + (3 - 1)^2} = 4
\]

\[
d(5,1) = \sqrt{(1 - 5)^2 + (1 - 4)^2 + (2 - 5)^2 + (2 - 4)^2 + (2 - 5)^2 + (1 - 4)^2 + (2 - 5)^2} = 8.0622
\]

\[
d(5,2) = \sqrt{(1 - 3)^2 + (1 - 3)^2 + (2 - 3)^2 + (2 - 3)^2 + (2 - 3)^2 + (1 - 3)^2 + (2 - 3)^2} = 4
\]
$$d(5,3) = \sqrt{(1 - 1)^2 + (1 - 1)^2 + (2 - 2)^2 + (2 - 2)^2 + (1 - 1)^2 + (2 - 2)^2}$$

\[
\begin{array}{cccc}
\text{C1} & \text{C2} & \text{C3} & \text{Result} \\
R1 & 2.645751 & 2.828427 & 6.63325 & 1 \\
R2 & 2.645751 & 0 & 7.874008 & 2 \\
R3 & 4.358899 & 0 & 4 & 2 \\
R4 & 4 & 1 & 4.358899 & 2 \\
R5 & 8.062258 & 4 & 0 & 3 \\
\end{array}
\]

Table VIII

First Iteration

Update the center of the cluster or centroid with the formula for the value of each variable from the grouping results divided by the total amount of data in a cluster. The results are as follows:

\[
\begin{array}{cccccccc}
\text{Q1} & \text{Q2} & \text{Q3} & \text{Q4} & \text{Q5} & \text{Q6} & \text{Q7} \\
C1 & 5 & 4 & 5 & 4 & 5 & 4 & 5 \\
C2 & 3.33 & 3.67 & 3.33 & 3.67 & 3.667 & 3.667 & 3.33 \\
C3 & 1 & 1 & 2 & 2 & 2 & 1 & 2 \\
\end{array}
\]

Table IX

New Centroid Values for the Last Iteration

The findings showed that no data moved to another cluster after the 2nd iteration. The results presented the responses of respondents regarding the response to COVID-19 vaccinations for elementary school students aged 6-11 years that have been carried out so far are presented in Table X.

\[
\begin{array}{cccccc}
\text{R*} & \text{C1} & \text{C2} & \text{C3} & \text{Result} \\
1 & 10.34 & 2.48 & 34.51 & 2 \\
2 & 11.78 & 2.48 & 7.87 & 2 \\
3 & 7.93 & 1.63 & 4 & 2 \\
4 & 8.36 & 1.63 & 4.35 & 2 \\
5 & 4.35 & 5.62 & 0 & 3 \\
\end{array}
\]

*\text{R}=\text{respondent}

Table X

The Results of Clustering

This section will implement the application design that has been made in the previous section by following the development stage of the RAD methodology.

Requirements Specification

a. Application users can upload respondent data that has been processed through the preprocessing stage into the application in the form of a CSV file.

b. On the home page, the application will display the respondent's data.

c. In the application, the initial centroid can be processed randomly by taking the respondent's data that has been previously labeled.

d. After the initial centroid is processed randomly, the application can perform data processing by calculating the distance of the respondent's data using the Euclidean distance formula.

e. The new centroid at each iteration can be updated automatically according to the application of the K-means clustering method.

f. To view the details of the iteration results, the user can select an iteration from the entire list of iterations displayed by the application through the grouping results of the K-means clustering method.

g. The final results are presented in the form of 2 visualizations. The graphical form displays how many people from each cluster. While the tabular form presents information on the number of respondents who are members of each cluster and the new centroid used in iterations with the results of calculating the Euclidean distance.

4. Validation

The 7-fold cross-validation (K=7) was used in this research by splitting the dataset into seven folds. This stage will show the results of the 3 clusters of sentiment which is positive, neutral, and negative. Each cluster will indicate how many respondents are in the cluster on several visual displays such as a table or chart.

B. Design

Table XI shows the flow of the program module design in pseudocode form which started from the process of determining the cluster and then determined the centroid, defined the Euclidean Distance value, and calculated the object distance of the Euclidean value. Also, there was a decision whether the object has moved, if there was not then the process is complete. However, if there were still moving objects, it would return to the process of determining the centroid.
TABLE XI
Module Program

Pseudocode: Calculate Euclidean Distance

Input:
D {atr1, atr2..n} // set of elements
K // number of desired clusters

Output:
K // Set of Clusters

K-Means Algorithm:
Assign initial values for C1, C2, C3
Repeat
Assign each item to the cluster which has the closest mean;
Calculate the new mean for each cluster;
Until convergence criteria are met;

Fig. 2 displays the database design for the application that contains the response values from the questionnaires in the previous stage. The centroid value at each iteration and the squared distance value using the Euclidean Distance formula are also included in this database.

Data Collection

Fig. 3 contains 3 important sections. First, the process to include the CSV file. Second, is a display of data files that have been successfully uploaded. Third, if you press the K-means Process button, then process the data for the grouping stage.

a. **Grouping**

Fig. 4. A Page for Grouping

This page has 5 important sections, including the iteration 1 button and, the next iteration button, both are steps that need to be done before the Euclidean Distance formula is executed.

b. **Processing and Result**

One can press the "Acak Centroid" button to randomize the initial centroid.

Fig. 5. Iteration Detail

This page displays the details of the iteration results of the grouping carried out. Data will be displayed in several visual forms such as tables and graphs. This page also shows the details of the centroid value and the results of calculating the distance from the Euclidean formula.

C. **Implementation**

This section will implement the application design that has been made in the previous section by following the development stage of the RAD methodology.
TABLE XII
Development Environment

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td>Minimum Laptop with specifications: CPU Intel Celeron, RAM 4GB, Windows 11.</td>
</tr>
<tr>
<td>Software</td>
<td>1. PHP7</td>
</tr>
<tr>
<td></td>
<td>2. Php MyAdminversi</td>
</tr>
<tr>
<td></td>
<td>3. Visual Studio Code version 1.70.2</td>
</tr>
<tr>
<td></td>
<td>4. Google Chrome version 104.0.5112.102</td>
</tr>
</tbody>
</table>

D. Testing

The dataset was divided into 7 parts using 7-fold cross-validation (K=7). Each validation has a different initial centroid to get the desired grouping results. The results of this validation can be seen in Table XIII.

<table>
<thead>
<tr>
<th>Test Result of 7-Fold Cross-Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

Based on Table XIII, the moderate neutral cluster has the highest amount of data in 7 tests. The following conclusions can be made.
1. All the features in the application, such as the CSV file upload feature, the random initial centroid, and the iteration results can run well.
2. The cluster with the least amount of data is the high addiction cluster where in experiments 1
and 3 and 2 and 4 have the same values.
3. The application can provide stable grouping results as well as describe the dominant conditions in the processed data.

IV. CONCLUSION

The K-means method is relatively simple to implement. The number of K clusters must be determined at the beginning of the algorithm. At the processing stage, 3 sentiment clusters were determined, namely positive (C1), neutral (C2), and negative (C3). It is seen that when the amount of data is not so much, the initial clustering will affect the cluster significantly. It will also hold back from predicting the value of K and knowing the actual cluster. Using the same data, if entered in a different order, may result in different clusters when the amount of data is small. In other words, the K-means method is sensitive to the initial conditions because the results will be greatly affected. K-means clustering often produces varying results in different algorithmic processes. Random selection of cluster patterns results in different clustering results which can lead to inconsistencies. This study used a random value for the initial centroid used for 7-fold cross-validation [26] and the results show consistency despite the initial centroid value.

Based on the tests carried out by 279 respondents, the familial responses toward the administration of COVID-19 vaccination to elementary school students consisted of 120 respondents who gave positive sentiments (43%), 113 respondents with neutral sentiments (41%), and 46 respondents had negative sentiments (16%). The majority of the families gave positive responses due to the high level of understanding and knowledge about COVID-19 vaccination for small children. Yet, there are a small number of families who do not fully agree with this policy due to the lack of knowledge and information regarding the administration procedure of COVID-19 vaccination for elementary school children among other reasons.

There are several recommendations made for further improvements related to this research. Firstly, it is highly suggested to differentiate the type of responses towards COVID-19 vaccination for children that are cognitive response (knowledge), affective response (behavior), and conative response (action). Secondly, there is a need to use different clustering algorithms as a comparison to see which algorithm gives better results, and also the research topic can be made broader. Secondly, adding more sentiment polarities can increase the accuracy of identifying and classifying the familial responses pertinent to the COVID-19 vaccination in all the elementary schools in the Kalawat district. Thirdly, the classifier built into our application has the flexibility to accommodate new data from other sources to determine the sentiments of respective participants about the administration of COVID-19 vaccination. Lastly, increasing the training data can certainly improve the capabilities of the classifier to curtail Euclidean distance between data points.

V. ACKNOWLEDGMENT

We want to express our gratitude to Universitas Katolik De La Salle Manado for their ongoing assistance and support, which made it possible for us to carry out this research.

VI. REFERENCES

