# Geographical Information System For Mapping Flood-Prone Areas in Manado City Using the K-Means Clustering Method

Aurelia Laurencia Koagouw<sup>1</sup>, Debby Paseru<sup>2\*</sup>, Indah Y. Kairupan<sup>3</sup>

<sup>1,2,3</sup>Informatics Engineering Study Program, Faculty of Engineering, De La Salle Catholic University Manado 19013082@unikadelasalle.ac.id<sup>1\*</sup>, dpaseru@unikadelasalle.ac.id<sup>2</sup>, ikairupan@unikadelasalle.ac.id<sup>3</sup> \*Corresponding author

Abstract--Floods are natural events or phenomena that can cause environmental damage, loss of property, psychological effects, and death or casualties. One way to control flooding non-structurally is by mapping areas that are prone to flooding. This study builds a geographic-based information system to map floodprone areas in Manado City using the K-Means Clustering algorithm. The main objective of this research is to identify and map areas with a high risk of flooding using spatial data. Slope, land cover type, soil type, water discharge (discharge), and rainfall are independent variables that will be used and processed using the K-Means Clustering algorithm. There are four clusters in the mapping results of flood-prone areas, namely: high vulnerability, medium vulnerability, low vulnerability, and not vulnerable. By using the K-Means method, the results obtained are Paal Dua and Wenang sub-districts are high-vulnerability groups, followed by Mapanget, Tuminting, and Singkil subdistricts with medium vulnerability groups. Tikala District is the only area with low vulnerability. Meanwhile, Bunaken, Sario, Wanea, and Malayayang sub-districts are areas that are not potentially prone to flooding.

*Key Words*: Flood; K-Means Clustering; Geographic Information System.

#### I. INTRODUCTION

Flooding is a natural occurrence that can inflict environmental damage, material loss, psychological impact on impacted individuals, and even death. Floods can last for an extended length of time, perhaps more than 24 hours. Furthermore, floods are defined as incidents in which the water level exceeds 40 cm and covers a vast area measuring more than 100 meters.

Rainfall, river water output, soil type, slope, and land cover are all interconnected factors that can produce flooding. Precipitation refers to the amount of rain that falls in a certain period of time, whereas river discharge refers to the highest volume of water that flows through a river in a given time period. Furthermore, the type of soil is related to its ability to absorb water, but the slope is tied to the area's topography, which can range from flat to mountainous. Flooding is more likely in places with gentle slopes than in locations with steep slopes. Land use in an area is connected to land cover.

Manado City flooded as an effect of heavy rain on January 27, 2023. Due to chronic rain, the Tondano River's water volume increased significantly, leading to flooding in various regions. This flood could not be avoided, and as it stands, many houses in numerous sub-districts, including Paal Dua, Tuminting, Sario, Wenang, and Singkil, were flooded. Given the possibility of flooding, it is critical to offer appropriate information about flood-prone areas. This will encourage people to be more cautious. As a result, it is vital to map regions in Manado City that have the potential to flood [1], so that we may identify areas in danger of flooding and those that are less prone to this disaster [2][3].

Previous research on K-Means for flood hazard mapping in Jombang [4] produced quite accurate results of 52.38%. Likewise, research by [5] resulted in the development of a technique for classifying flood-prone locations using color categorization. Green indicates places that are safe from floods, orange indicates moderately vulnerable areas, and red indicates extremely vulnerable areas. In addition, a recent study by [6] classified items depending on their distance from the center point, yielding three categories: susceptible regions, less vulnerable areas, and places not prone to floods. Then, a prior study by [7] entailed a digitizing process utilizing Arcview software to identify locations based on criteria for flooding hazards. The results are divided into three cluster levels, namely low cluster, medium cluster, and high cluster, for areas that are vulnerable to flooding.

The Geographic Information System (GIS) is a

platform for sharing information on location, space, and place, as well as changeable data [8][9][10]. GIS is utilized for mapping, and the Kmeans clustering algorithm is used to organize enormous volumes of data. This method aids in the identification and grouping of data depending on specific parameters. Aside from that, the K-Means Clustering approach will be represented using Geographic Information Systems (GIS) maps.

According to the explanation, the author sees a potential to deploy the K-means clustering approach in a geographic information system focused on mapping flood-prone zones in Manado City. Slope [10], land cover type [11], soil type [12] [13], water estimates (discharge) [14], and rainfall [15] are among the factors that will be employed. Aside from identifying and mapping flood-prone locations, another goal of this research is to segment risk zones using the K-Means Clustering method to classify places into risk zones based on geographic characteristics, hydrology, and other criteria. other pertinent matters. The risk zone segmentation data will be provided in map format, with four colors indicating the extent of vulnerability in each segmenting risk zones, location. By the government is able to take necessary action in risk mitigation and regional development planning.



Fig. 1. Framework of Research

The system's computations must produce the same results as manual calculations during the analysis step. This GIS will be created as an online platform accessible over the internet [16], in order for its use to not be confined to the Manado City region. In this instance, it is accessible from anywhere, including outside the city. It is intended that the establishment of this system will assist the government in anticipating locations that may experience flooding and providing essential information to the public so that they are better aware of the risk of flooding in the future.

# II. METHODS

This research is quantitative and starts with data collection. Data was obtained from the Balai Wilayah Sungai Sulawesi and Badan Ι Perencanaan Pembangunan Daerah (Bappelitbangda) Manado. An interview was also conducted with one of the employees of the Balai Wilayah Sungai Sulawesi I to find out the flood mapping procedures carried out so far. The data obtained is in the form of slope, land cover, soil type, water discharge (discharge) and rainfall. Data were analyzed using the MSI (Method of Successive Interval) technique because this technique can convert ordinal data. The results from MSI are used for clustering using the K-Means method; prone to flooding or not. Meanwhile, RAD is used to create GIS applications. The RAD technique expedites and streamlines design. System development employs a repeatable procedure [17].




Fig. 2. Rapid Application Development Stages

1. Requirements Planning

The initial stage focuses on locating suitable data sources. Data was gathered using direct research and observation methods, as well as interview approaches.

2. User Design

This stage focuses on designing the application, producing an appealing appearance, identifying needs specifications, and developing a user-friendly system model.

3. Construction

This stage focuses on the creation and development of applications. Programmers create features for applications. Users can submit feedback or request modifications to the application.

# 4. Cutovers

Following the construction phase, this stage focuses on testing the application. This final stage consists of testing the function, interface, and overall program or application that has been produced, culminating in a new application that can run smoothly.

### III. RESULT AND DISCUSSION

The data for this study were gathered through interviews with officials from Balai Wilayah Sungai Sulawesi I and Badan Perencanaan Pembangunan Daerah (Bappelitbangda). Soil type, slope level, land cover type, rainfall, and water discharge estimations are among the data collected.

# A. Data Collection

Data collection is the collecting of information that describes each variable or item utilized in the study. Table I displays the results of the soil type data translation. Table II displays the results of the Slope Data. Table III displays the land cover data. Table IV explains the rainfall in each area in Manado over the last 11 years. Table V explains the debit data for 7 Pos Duga data Water in Manado City in the last 11 years (2011-2021).

|     | TABLE I     |             |  |  |  |  |
|-----|-------------|-------------|--|--|--|--|
|     | Soil Typ    | e Data      |  |  |  |  |
| No  | Subdistrict | The average |  |  |  |  |
| 1.  | Bunaken     | 7,9567      |  |  |  |  |
| 2.  | Mapanget    | 12,7432     |  |  |  |  |
| 3.  | Tuminting   | 7,1267      |  |  |  |  |
| 4.  | Singkil     | 7,1267      |  |  |  |  |
| 5.  | Wenang      | 7,1267      |  |  |  |  |
| 6.  | Paal Dua    | 9,7466      |  |  |  |  |
| 7.  | Sario       | 7,1267      |  |  |  |  |
| 8.  | Tikala      | 9,7466      |  |  |  |  |
| 9.  | Wanea       | 9,7466      |  |  |  |  |
| 10. | Malalayang  | 17,4185     |  |  |  |  |

|    | TABLE II    |                         |  |  |  |  |  |
|----|-------------|-------------------------|--|--|--|--|--|
|    | Slope Data  |                         |  |  |  |  |  |
| No | Subdistrict | Subdistrict The average |  |  |  |  |  |
| 1. | Bunaken     | 4,3190                  |  |  |  |  |  |
| 2. | Mapanget    | 3,9190                  |  |  |  |  |  |
| 3. | Tuminting   | 3,9190                  |  |  |  |  |  |
| 4. | Singkil     | 3,9190                  |  |  |  |  |  |
| 5. | Wenang      | 3,9190                  |  |  |  |  |  |
| 6. | Paal Dua    | 3,9190                  |  |  |  |  |  |

| No  | Subdistrict | The average |
|-----|-------------|-------------|
| 7.  | Sario       | 3,0154      |
| 8.  | Tikala      | 3,9190      |
| 9.  | Wanea       | 3,9190      |
| 10. | Malalayang  | 3,9190      |

|     | TABLE III   |             |  |  |  |
|-----|-------------|-------------|--|--|--|
|     | Land Cov    | ver Data    |  |  |  |
| No  | Subdistrict | The average |  |  |  |
| 1.  | Bunaken     | 12,3312     |  |  |  |
| 2.  | Mapanget    | 22,1099     |  |  |  |
| 3.  | Tuminting   | 11,5078     |  |  |  |
| 4.  | Singkil     | 9,7931      |  |  |  |
| 5.  | Wenang      | 18,1439     |  |  |  |
| 6.  | Paal Dua    | 19,1631     |  |  |  |
| 7.  | Sario       | 14,5458     |  |  |  |
| 8.  | Tikala      | 13,4711     |  |  |  |
| 9.  | Wanea       | 20,7036     |  |  |  |
| 10. | Malalayang  | 19,5538     |  |  |  |

|             | TABLE IV<br>Maximum Rainfall |             |  |
|-------------|------------------------------|-------------|--|
| Subdistrict | Maximum Rainfall             | Final score |  |
| Bunaken     | 113,3000                     | 113,3000    |  |
| Mapanget    | 113,3000                     | 120,0136    |  |
|             | 126,7273                     |             |  |
| Tuminting   | 113,3000                     | 113,3000    |  |
| Singkil     | 113,3000                     | 113,3000    |  |
| Wenang      | 131,2818                     | 122,2909    |  |
|             | 113,3000                     |             |  |
| Paal Dua    | 131,2818                     | 122,2909    |  |
|             | 113,3000                     |             |  |
| Sario       | 131,2818                     | 131,2818    |  |
| Tikala      | 131,2818                     | 139,6773    |  |
|             | 148,0727                     |             |  |
| Wanea       | 131,2818                     | 139,6773    |  |
|             | 148,0727                     |             |  |
| Malalayang  | 124,3455                     | 127,8136    |  |
|             | 131,2818                     |             |  |

|             | TABLE V<br>Estimated Water |             |
|-------------|----------------------------|-------------|
| Subdistrict | Water Estimate (Discharge) | Final score |
| Bunaken     | 59,2300                    | 59,2300     |
| Manangat    | 59,2300                    | 105,5487    |
| Mapanget    | 151,8673                   | 105,5467    |
| Tuminting   | 59,2300                    | 105,5487    |
| Tuminting   | 151,8673                   | 103,3487    |
| Singkil     | 151,8673                   | 151,8673    |
| W           | 964,7311                   | 559 2002    |
| Wenang      | 151,8673                   | 558,2992    |
| Paal Dua    | 964,7311                   | 559 2002    |
| Paal Dua    | 151,8673                   | 558,2992    |

| Subdistrict | Water Estimate (Discharge) | Final score |
|-------------|----------------------------|-------------|
| Sario       | 29,7255                    | 19,5942     |
|             | 9,4628                     |             |
| Tikala      | 964,7311                   | 487 0070    |
| Tikala      | 9,4628                     | 487,0970    |
| Wanea       | 29,7255                    | 19,5942     |
| vv anea     | 9,4628                     | 19,3942     |
| Malalayang  | 29,7255                    | 29,7255     |

# A. Calculation of K-Means Clustering

The results of the preceding investigation on numerous factors or characteristics resulted in a data collection of sub-district attributes. The data for District Parameters (Attributes) is shown in Table VI.

|                  |                         | TA                               | ABLE VI    |        |        |
|------------------|-------------------------|----------------------------------|------------|--------|--------|
|                  |                         | Dis                              | trict Data |        |        |
| _                | Parameters (Attributes) |                                  |            |        |        |
| Sub-<br>district | Type<br>of<br>soil      | Water<br>Estimate<br>(Discharge) |            |        |        |
| Bunaken          | 7,96                    | 4,32                             | 12,33      | 113,30 | 59,23  |
| Mapanget         | 12,74                   | 3,92                             | 22,11      | 120,01 | 105,55 |
| Tuminting        | 7,13                    | 3,92                             | 11,51      | 113,30 | 105,55 |
| Singkil          | 7,13                    | 3,92                             | 9,79       | 113,30 | 151,87 |
| Wenang           | 7,13                    | 3,92                             | 18,14      | 122,29 | 558,30 |
| Paal Dua         | 9,75                    | 3,92                             | 19,16      | 122,29 | 558,30 |
| Sario            | 7,13                    | 3,02                             | 14,55      | 131,28 | 19,59  |
| Tikala           | 9,75                    | 3,92                             | 13,47      | 139,68 | 487,10 |
| Wanea            | 9,75                    | 3,92                             | 20,70      | 139,68 | 19,59  |
| Malalayang       | 17,42                   | 3,92                             | 19,55      | 127,81 | 29,73  |

The steps for computing K-Means Clustering are as follows:

- 1. Counting the number of Clusters.
  - C1 is for High Susceptibility, C2 is for Medium Susceptibility, C3 is for Low Susceptibility, and C4 is for Unprone.
- 2. Selection of the first cluster center (cluster centroid) at random.

| TABLE VII                         |   |
|-----------------------------------|---|
| Initial Cluster Center (Centroid) | ) |

| mittai Cluster Center (Centroid) |         |        |         |          |          |
|----------------------------------|---------|--------|---------|----------|----------|
| C1                               | 9,7466  | 3,9190 | 19,1631 | 122,2909 | 558,2992 |
| C2                               | 7,1267  | 3,9190 | 11,5078 | 113,3000 | 105,5487 |
| C3                               | 9,7466  | 3,9190 | 13,4711 | 139,6773 | 487,0970 |
| C4                               | 12,7432 | 3,9190 | 22,1099 | 120,0136 | 105,5487 |

3. Use the Euclidean Distance formula to calculate the distance between data and cluster centers, resulting in a table (matrix) of distances to clusters.

D (i,j) =

$$\overline{\left(x_{1_{i}}-x_{1_{j}}\right)^{2}+\left(x_{2_{i}}-x_{2_{j}}\right)^{2}+...+\left(x_{k_{i}}-x_{k_{j}}\right)^{2}}$$
(1)

Bunaken District:

- Data distance from Bunaken District to centroid center C1: D (1,1) = 499,2113
- Data distance from Bunaken District to the C2 centroid center: D (1,2) = 46,3351
- Data distance from Bunaken District to the C3 centroid center: D (1,3) = 428,6847
- Data distance from Bunaken District to the C4 centroid center: D (1,4) = 48,0613

Calculations are carried out for each sub-district (carry out calculations for up to 10 sub-districts). Table VIII is the result of calculating the data distance to the centroid center in iteration 1.

| TABLE VIII  |  |
|-------------|--|
| Iteration 1 |  |

| Data Distance to Centroid Center in |          |          |          |          |  |  |
|-------------------------------------|----------|----------|----------|----------|--|--|
| Subdistrict                         |          | Itera    | tion 1   |          |  |  |
|                                     | C1       | C2       | C3       | C4       |  |  |
| Bunaken                             | 499,2003 | 46,3351  | 428,6847 | 48,0540  |  |  |
| Mapanget                            | 452,7758 | 13,7485  | 382,1641 | 0,0000   |  |  |
| Tuminting                           | 452,9121 | 0,0000   | 382,4730 | 13,7485  |  |  |
| Singkil                             | 406,6477 | 46,3504  | 336,2961 | 48,7210  |  |  |
| Wenang                              | 2,8112   | 452,8884 | 73,4898  | 452,8085 |  |  |
| Paal Dua                            | 0,0000   | 452,9121 | 73,5149  | 452,7758 |  |  |
| Sario                               | 538,8070 | 87,8725  | 467,5876 | 87,2051  |  |  |
| Tikala                              | 73,5149  | 382,4730 | 0,0000   | 382,1641 |  |  |
| Wanea                               | 538,9878 | 90,4177  | 467,5588 | 88,2372  |  |  |
| Malalayang                          | 528,6584 | 78,2973  | 457,6301 | 76,4093  |  |  |

4. Group each object into the closest centroid to get cluster results.

|     | TABLE IX                                |             |         |  |  |  |
|-----|-----------------------------------------|-------------|---------|--|--|--|
| Clu | Cluster Grouping Results In Iteration 1 |             |         |  |  |  |
|     | No                                      | Subdistrict | Cluster |  |  |  |
|     | 1.                                      | Bunaken     | C2      |  |  |  |
|     | 2.                                      | Mapanget    | C4      |  |  |  |
|     | 3.                                      | Tuminting   | C2      |  |  |  |
|     | 4.                                      | Singkil     | C2      |  |  |  |
|     | 5.                                      | Wenang      | C1      |  |  |  |
|     | 6.                                      | Paal Dua    | C1      |  |  |  |
|     | 7.                                      | Sario       | C4      |  |  |  |
| _   | 8.                                      | Tikala      | C3      |  |  |  |

JOURNAL OF INFORMATION TECHNOLOGY AND ITS UTILIZATION, VOLUME 7, ISSUE 1, JUNE 2024 EISSN 2654-802X ; PISSN 2985-4067 DOI: https://doi.org/10.56873/JITU.7.1.5403. SUBMITTED: DECEMBER 14, 2023; REVISED: MARCH 13, 2024; ACCEPTED: APRIL 5, 2024

NoSubdistrictCluster9.WaneaC410.MalalayangC4

- 5. Determining the new center point's position in order to carry out the following iteration.
- 6. Repeat step 3 until the new centroid location is the same as the old.

The computation method is repeated until the new centroid has the same value as the previous iteration's centroid. The average is derived from the data included in the same centroid to provide a new centroid. When the calculation tables for Iteration 2 and Iteration 3 are compared, the clusters in each sub-district have not changed (have been fixed), hence the computation concludes in Iteration 3. The final data acquired by clustering is shown in Tabel 10.

TABLE X Final Results of K-Means Clustering Calculations

| No  | Subdistrict | Cluster | Status                |
|-----|-------------|---------|-----------------------|
| 1.  | Bunaken     | C4      | Not vulnerable        |
| 2.  | Mapanget    | C2      | Medium Susceptibility |
| 3.  | Tuminting   | C2      | Medium Susceptibility |
| 4.  | Singkil     | C2      | Medium Susceptibility |
| 5.  | Wenang      | C1      | High Vulnerability    |
| 6.  | Paal Dua    | C1      | High Vulnerability    |
| 7.  | Sario       | C4      | No potential          |
| 8.  | Tikala      | C3      | Low Vulnerability     |
| 9.  | Wanea       | C4      | No potential          |
| 10. | Malalayang  | C4      | No potential          |

# B. Design

This section explains the flowchart design of the system that will be created. This flowchart depicts the stages involved in computing the K-Means Clustering technique. Fig. 3 shows the K-Means Clustering Flowchart in the program on the next page.

#### C. Implementations

Results of the implementation of the Geographic Information System Mapping Flood Prone Areas in Manado City Using the K-Means Clustering Method are shown in Fig. 4 - 7.

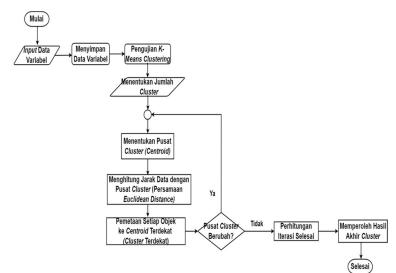



Fig. 3. Flowchart of K-Means Clustering in the Application



Fig. 4. Flood Point Location Data Page

|     | Di Kota Manado       |                                |                            |                                  |                      |                           |               |
|-----|----------------------|--------------------------------|----------------------------|----------------------------------|----------------------|---------------------------|---------------|
|     | Beranda Data         | Master • Kelola Konte          | n • Menu Informasi •       | Menu Tilik Banjir • Para         | ameter & Perhitungan | •                         | Aurele        |
| 4   | Jji Sudah Dibuat     |                                |                            |                                  |                      |                           |               |
|     |                      |                                |                            |                                  |                      |                           |               |
| AT  | . WI                 |                                |                            |                                  |                      |                           |               |
| ATJ | Kecamatan            | Jenis Tanah                    | Kemiringan Lereng          | Tutupan lahan                    | Curah Hujan          | Duga Air (Debit)          | Cluster Pusat |
|     |                      | Jenis Tanah<br>7.9566287779582 | Kemiringan Lereng<br>4.319 | Tutupan lahan<br>12.573433457082 | Curah Hujan<br>113.3 | Duga Air (Debit)<br>59.23 | Cluster Pusat |
| lo  | Kecamatan            |                                |                            |                                  |                      |                           |               |
| 40  | Kecamatan<br>Bunaken | 7.9566287779582                | 4.319                      | 12.573433457082                  | 113.3                | 59.23                     |               |

Fig. 5. K-Means Clustering Calculation Page

| Bera    | anda Data Master • Kelola Konten • | Menu Informasi • Menu Titik Banjir | Parameter & Perhitungan |         |
|---------|------------------------------------|------------------------------------|-------------------------|---------|
|         |                                    |                                    |                         | Aurelia |
|         |                                    |                                    |                         |         |
|         |                                    |                                    |                         |         |
| ata Pen | gujian                             |                                    |                         |         |
|         |                                    |                                    |                         |         |
| 10      | records per page Search:           |                                    |                         |         |
| io -    | No Pengujian                       | 0 Hasil 0 Pengujian                |                         |         |
|         |                                    |                                    |                         |         |
|         | Data Perhitungan Ke-1              | LNE                                |                         |         |
|         | Data Perhitungan Ke-2              | Lind                               |                         |         |
|         |                                    | UNE                                |                         |         |

Fig. 6. K-Means Clustering Calculation Results Page

DOI: https://doi.org/10.56873/JITU.7.1.5403. SUBMITTED: DECEMBER 14, 2023; REVISED: MARCH 13, 2024; ACCEPTED: APRIL 5, 2024

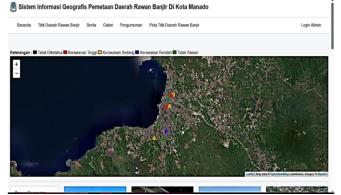



Fig. 7. Page Points for Flood Prone Areas

#### D. Testing

The system was thoroughly tested, including functionality, user interfaces, and any software or applications that have been developed. The goal of this test was to determine whether all features or functions comply with set standards and to identify any shortcomings that need to be remedied.

TABLE XI Testing Pecults

|                                                                                                                       | Testing Results                                                                                                                |                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Testing                                                                                                               | Expected results                                                                                                               | Actual<br>Results                                                                                                                          |
| Select the "add<br>data" button on the<br>admin data page<br>and enter the<br>details of the data<br>you want to add. | The data entered is<br>added to the admin<br>data list.                                                                        | Admin data<br>added<br>successfully                                                                                                        |
| Added 1 flood<br>point location data<br>on the flood point<br>menu page.                                              | The entered data is<br>added to the flood<br>point location data<br>list.                                                      | Flood point<br>data added<br>successfully                                                                                                  |
| Select the "create<br>test data" button on<br>the K-Means<br>Clustering<br>calculation page.                          | The entered data is<br>added to the K-<br>Means Clustering<br>calculation test list.                                           | Test data<br>added<br>successfully                                                                                                         |
| Select a central<br>cluster of more<br>than 4 sub-districts                                                           | Cannot save the<br>initial central<br>centroid<br>determination<br>(because the<br>vulnerability level<br>is only 4 clusters). | The<br>application<br>gives a<br>notification<br>"Selected<br>clusters are<br>more than 4.                                                 |
| Select the "view"<br>button for testing<br>data from the K-<br>Means Clustering<br>calculation results.               | Admin can see<br>data from K-<br>Means Clustering<br>calculations and<br>their iterations.                                     | The<br>application<br>successfully<br>displays the<br>results of<br>the K-<br>Means<br>Clustering<br>calculation<br>and its<br>iterations. |

| Testing                            | Expected results                                       | Actual<br>Results                                                                        |
|------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------|
| Select a map of flood-prone areas. | Users can view a<br>map page of flood-<br>prone areas. | The<br>application<br>successfully<br>displays a<br>map page of<br>flood-prone<br>areas. |

Testing of the functions and features of the GIS application that was built was successfully carried out and the application was free from K-Means errors. even the method was successfully applied to the application. By using the K-means method, the GIS application can depict flood-prone areas in the city of Manado easily and precisely. This is in accordance with the results of previous studies.

#### II. CONCLUSION

Based on the above explanation, it is possible to conclude that Geographic Information System has succeeded in displaying mapping of potentially flood-prone areas in Manado City using the K-Means Clustering method. Results of clustering of flood-prone areas using the K-means Clustering method, namely that the Paal Dua and Wenang areas are the most flood-prone areas, followed by Mapanget, Tuminting and Singkil as flood-prone areas. The Tikala area is not potentially prone to flooding along with Bunaken, Sario, Wanea and Malayayang.

For further research, rainfall data should use data from BMKG Manado City. Additional attributes or variables that cause flooding can be added according to the conditions of an area. This research can use the Meta-Heuristic algorithm to determine the centroid center so that clustering results are better.

#### III. REFERENCES

[1] I. Kairupan, Z. Y. Huang, H. C. Chang, and C. W. Chang, "Emergency Navigation and Alarm with Flooding Models - A Real Case Study Of Manado City," in 2016 International Conference on Problem-Solving, ICCP Communication 2016. IEEE, 1-2. Taiwan: 2016. Doi: pp. 10.1109/Iccps.2016.7751120.

[2] H. Rakuasa, J. K. Helwend, and D. A. Sihasale, "Pemetaan Daerah Rawan Banjir di Kota Ambon Menggunakan Sistem Informasi Geografis," Jurnal Geografi, Media Informasi Pengembangan dan Profesi Kegeografian, Vol. 19, No. 2, 2022, Doi: 10.15294/Jg.V19i2.34240.

- [3] P. F. Opit, I. Y. Kairupan, and F. M. Rusuh, "A Milp Model for Water Level Sensor Placement with Multi-Sensor and Multi-Disaster Areas," *J. Tek. Ind.*, Vol. 22, No. 2, 2021, Doi: 10.22219/Jtiumm.Vol 22. No 2.185-195.
- [4] R. A. Kurniawan. "Sistem Informasi Geografis Pemetaan Daerah Potensi Rawan Banjir dengan Metode K-Means Clustering (Studi Kasus: Kabupaten Jombang)". Skripsi. Universitas Bhayangkara Surabaya. 2023.
- [5] I. Faturohim and A. Baita, "Penerapan Algoritma K-Means Clustering untuk Mengelompokkan Kerawanan Rob di Daerah Pekalongan," *Juti "Jurnal Teknol. Informasi,*" Vol. 1, No. 1, 2022, Doi: 10.26798/Juti.V1i1.624.
- [6] R. Aprillina, A. Nurlifa, A. Haryoko, R. E. Putri, and A. N. Rosalita, "Clustering Daerah Rawan Banjir di Kabupaten Tuban dengan K-Means Disertai Visualisasi," *Curtina Comput. Sci. Or Inform. J.*, Vol. 1, No. 1, Pp. 40–51, 2022.
- [7] N. N. Adisanjaya, A. Kusuma, and I. G. N. M. Nugraha, "Pemetaan Zonasi Daerah Rawan Banjir di Denpasar Bali Dengan Metode K-Means Clustering," *J. Media Sains*, 2021.
- [8] A. F. Aslamsyah, Y. A. Pranoto, and R. P. P, "Sistem Informasi Geografis Daerah Hortikultura (Sayuran) Kabupaten Malang," *Jati (Jurnal Mhs. Tek. Inform.*, Vol. 4, No. 2, 2020.
- [9] K. P. Sinaga and M. S. Yang, "Unsupervised K-Means Clustering Algorithm," *IEEE Access*, Vol. 8, 2020, Doi: 10.1109/Access.2020.2988796.
- [10] B. Lund and J. Ma, "A Review of Cluster Analysis Techniques and Their Uses in Library and Information Science Research: K-Means and K-Medoids Clustering," *Perform. Meas. Metrics*, Vol. 22, No. 3, 2021, Doi: 10.1108/Pmm-05-2021-0026.
- [11] N. P. G. Qur'ani, D. Harisuseno, and J. S. Fidari, "Studi Pengaruh Kemiringan Lereng terhadap Laju Infiltrasi," *J. Teknol. dan Rekayasa Sumber Daya Air*, Vol. 2, No. 1, 2022, Doi: 10.21776/Ub.Jtresda.2022.002.01.19.
- [12] A. Yusuf, D. I. Kusumastuti, and E. P. Wahono, "Pengaruh Tutupan Lahan terhadap Base Flow Index Das Way Seputih Provinsi Lampung," *Siklus J. Tek. Sipil*, Vol. 7, No. 2, 2021, Doi: 10.31849/Siklus.V7i2.7323.
- [13] A. Anwari and M. Makruf, "Pemetaan Wilayah Rawan Bahaya Banjir di Kabupaten Pamekasan Berbasis Sistem Informasi Geografis (Sig)," *Netw. Eng. Res. Oper.*, Vol. 4, No. 2, Pp. 117–123, 2019, Doi: 10.21107/Nero.V4i2.127.
- [14] G. Genesiska, M. Mulyono, and A. Intan Yufantari, "Pengaruh Jenis Tanah terhadap Pertumbuhan dan Hasil Tanaman Jagung (Zea Mays L.) Varietas Pulut Sulawesi," *Plantropica J. Agric. Sci.*, Vol. 5, No. 2, 2020, Doi: 10.21776/Ub.Jpt.2020.005.2.2.
- [15] Sarmidi and Sidik Ibnu Rahmat, "Sistem Peringatan Dini Banjir Menggunakan Sensor Ultrasonik Berbasis Arduino Uno," J. Manaj. dan Tek. Inform., Vol. 02, No. 01, pp. 181–190, 2018.
- [16] W. S. Aji, "Simulasi Dengan Multi Agent Prediksi Banjir Berdasarkan Intensitas Hujan Menggunakan

Particle Swarm Optimization," J. Teknol. Inf., Vol. 5, No. 2, 2019.

- [17] T. S. Pratiwi and H. C. Chotimah, "Aktivitas Diplomasi Digital dalam Manajemen Bencana: Studi Kasus di Daerah Istimewa Yogyakarta, Indonesia dan Fukushima, Jepang," J. Stud. Diplomasi dan Keamanan, Vol. 13, No. 1, 2021, Doi: 10.31315/Jsdk.V13i1.4367.
- [18] D. Hariyanto, et al., "Implementasi Metode RAD pada Sistem Informasi Perpustakaan", Jurnal Penelitian Ilmu dan Teknologi Komputer (JUPITER), Vol. 13, No. 1, pp. 110–117, 2021.