CLUSTER ANALYSIS FOR LEARNING STYLE OF VOCATIONAL HIGH SCHOOL STUDENT USING K-MEANS AND FUZZY C-MEANS (FCM)
Main Article Content
Abstract
Abstrak
Ketidakmampuan siswa dalam menyerap berbagai pengetahuan bukan dikarenakan ketidakmampuannya pemahamanan bukan pula karena guru tidak mampu mengajar, melainkan lebih dikarenakan ketidak cocokan gaya belajar (learning style) antara siswa dan guru, sehingga siswa merasa tidak nyaman belajar pada guru, hal tersebut terjadi juga di Sekolah Menengah Kejuruan, penelitian untuk menganalisa cluster (kelompok) tipe belajar siswa dengan menerapkan metode data mining yaitu K-means dan Fuzzy C-means (FCM). Tujuan ingin dicapai adalah mengetahui keefektifan clustering tipe belajar ini terhadap perkembangan daya serap dan peningkatan prestasi belajar siswa. Dalam penelitian ini metode yang digunakan dimulai dari tahap data cleaning, data selection, data transformation, pemambangan data, pattern evolution, dan pengembangan pengetahuan (knowledge). Hasil Penelitian didapatkan dengan mengunakan metode K-Means dan FCM dapat dibentuk 4 cluster yaitu tipe belajar audio dan visual, tipe belajar visual dan audio, tipe belajar visual serta tipe belajar kinestetis dan audio.
Kata kunci : Data mining, tipe belajar, clustering, FCM, K-means
Abstract
The inability of students to absorb the various knowledge conveyed by the teacher is not due to the inability of his understanding and not because the teacher is not able to teach, but rather due to the incompatibility of learning styles (learning style) between students and teachers, so that students feel uncomfortable learning to certain teachers, it occurred also in Vocational High School Student, research to analyze cluster (group) type of student learning by applying data mining method that is K-means and Fuzzy C-means (FCM). The goal to be achieved is to know the effectiveness of this type of learning clustering on the development of absorptive capacity and improvement of student achievement. In this research, the method used to cluster the learning type with data mining process starting from data cleaning, data selection, data transformation, data mining, pattern evolution, and knowledge (knowledge). The result of the research was obtained by using K-Means and FCM method can be shown 4 clusters which are combination of auditory and visual learning style, visual and auditory style, only visual style and kinesthetic and auditory style.
Article Details
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Dean, J. 2014. Big Data, Data Mining, and Machine Learning Value Creation for Business Leaders and Practitioners. Wiley. New Jersey.
Deporter,B. dan Hernacki,M. 2011. Quantum Learning. Terjemahan Alwiyah Abdurrahman. Kaifa. Bandung.
Ghosh, S. dan Dubey, S.K. 2013. Comparative Analysis of K-Means and Fuzzy C-Means Algorithms. International Journal of Advanced Computer Science and Applications. 4(4): 35-39.
Hasibuan, Z. A. 2007. Metodologi Penelitian Pada Bidang Ilmu Komputer dan Teknologi Informasi : Konsep dan Aplikasi. Fakultas Imu Komputer Universitas Indonesia. Jakarta.
Kamber, H.J. dan Pie, J.M. 2012. Data Mining : Concepts and Techniques.Edisi 3. Morgan Kaufmann. USA.
Ledolter, J. 2013. Data Mining and Business Analytics with R. Wiley. New Jersey.
Lestari, W. 2015. Pemetaan Gaya Belajar Mahasiswa dengan ClusteringMenggunakan Fuzzy C-means. Jurnal Sainstech Politeknik Indonusa Surakarta.
(3): 23-31.
Merliana, N.P.E. 2015. Perbandingan Metode K-Means Dengan Fuzzy C-Means
Untuk Analisa Karakteristik Mahasiswa Berdasarkan Kunjungan Ke Perpustakaan. Tesis. Fakultas Teknik InformatikaUniversitas Atma Jaya, Yogyakarta.
Setiawati. 2008. Education Games. Proumedia. Jakarta.
Wilis, R. 2011. Teori-teori belajar dan Pembelajaran. Erlangga. Jakarta.
Williams, J dan Simoff, J. 2006. Data Mining Theory, Methodology, Technique, and Aplication. Springer Verlag Berlin Heidelberg. Germany.
Winkel, W.S. 2012. Psikologi Pengajaran. Media Abadi. Yogyakarta.
Witten, I.H. Frank, E. dan Hall, M.A. 2011. DataMining Practical Machine Learning Tool and Techniques. Edisi 3. Elsevier Inc. USA.