Pengembangan Algoritma Apriori Untuk Pengambil Keputusan

Authors

  • Lismardiana Lismardiana Program S2 Teknik Informatika, Fakultas Ilmu Komputer dan Teknologi Informasi Universitas Sumatera Utara
  • Herman Mawengkang Program S2 Teknik Informatika, Fakultas Ilmu Komputer dan Teknologi Informasi Universitas Sumatera Utara
  • Erna Budhiarti Nababan

Keywords:

Develovment Apriori, FP-Growth, Asosiasi Rule Mining, Frequent Item/itemset

Abstract

Algoritma Apriori salah satu algoritma data mining dalam pembentukan asosiasi rule mining. Algoritma apriori adalah proses ekstraksi informasi dari suatu database, dilanjutkan dengan melakukan frequent item/itemset dan candidate generation dalam pembentukan asosiasi rule mining guna mendapatkan hasil nilai minimum support dan hasil nilai minimum confidence. Pada database yang cukup besar, algoritma apriori banyak menghasilkan pattern frequent item/itemset (pola sering muncul suatu item/itemset) yang banyak, karena harus melakukan candidate generation serta merekam database secara berulang-ulang. Dengan ini penulis berkeinginan mengembangkan algoritma apriori dengan melakukan penelitian  tentang bagaimana meminimalkan frequent item/itemset pada apriori, tanpa melakukan candidate generation sehingga mempercepat tahapan penyelesaian pencarian asosiasi rule mining. Untuk solusi meminimalkan  frequent item/itemset pada algoritma apriori, maka penulis  menggunakan metode FP-Growth,dari hasil penelitian yang dilakukan dengan menggunakan dataset 1000 records pada TransactionID-Sales , pada apriori mulai dari k2, dihasil sebanyak 101 frequent  item/itemset, sementara pada FP-Growth k2 sebanyak 40 frequent  item/itemset. Dari  jumlah hasil  frequent item/itemset dapat disimpulkan bahwa dengan metode FP-Growth mampu meminimalkan jumlah frequent item/itemset pada algoritma apriori dan lebih efesien dari segi waktu, juga  tahap penyelesaian lebih cepat, lebih terperinci dalam memaparkan hasil frequent item/itemset karena hasil frequent yang bernilai 1 masih diperhitungkan

References

Heena Rani, Shuchita Upadhyaya dan Vinod Kumar.2014. Frequent Pattern Analysis of Moving Objects Using Apriori Algorithm International Journal of Emerging Research in Management &Technology ISSN: 2278-9359 Volume-3, Issue-4 April .

Moriwal. Rahul .2014. FP-growth Tree for large and Dynamic Data Set and Improve

Efficiency. ISSN 1746-7659, England, UK Journal of Information and Computing Science Vol. 2:083-090

.

Kumar B.S dan Rukmani .K.V. 2010. Implementation of Web Usage Mining Using APRIORI and FP Growth Algorithms. Int. J. of Advanced Networking and Applications 400 Volume:01, Issue:06, Pages: 400-404

Abdullah Saad Almalaise Alghamdi. Efficient Implementation of FP Growth Algorithm-Data Mining on Medical Data. IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.12, December 2011

Han et al 2000. Mining Frequent Patterns without Candidate Generation In Proceedings of the 2000 ACM SIGMOD international Conference on Management of Data (Dallas, Texas, United States, May 15 -18, 2000). SIGMOD '00. ACM Press, New York, NY, 1-12.

Tanna P & Ghodasara Y.2014. Using Apriori with WEKA for Frequent Pattern Mining International Journal of Engineering Trends and Technology (IJETT) – Volume 12 Number 3 - Jun 2014

(https://support.spatialkey.com/spatialkey-sample-csv-data/ data sales di download pada tanggal 18 Juni 2015 pukul 22.45 WIB)

Kaur et al 2014. Design and Implementation of Efficient Apriori Algorithm International Journal on Recent and Innovation Trends in Computing and Communication Volume: 2 Issue: 5 ISSN: 2321-8169 1205– 1208

Berry.M.J.A. & Linoff.G.S. 2004. Data Mining Techniques for Marketing, Sales, and Customer Relationship Management Second Edition .

Arora K. Rakesh dan Badal Dharmendra. 2014. Mining Association Rules to Improve Academic Performance ”, International Journal of Computer Science and Mobile Computing, Vol. 3 : 1

Downloads

Published

2016-12-13