Determining Priority Scale of Interconnection Tariff Regulation Using Fuzzy QFD - TOPSIS (Penentuan Skala Prioritas Regulasi Tarif Interkoneksi Menggunakan Metode Fuzzy QFD - TOPSIS)

Main Article Content

Ridwan Pandiya
Ade Wahyudin
Sindhi Pradnya Nareswari

Abstract

This paper applies Fuzzy QFD in determing priorities of the interconnection tariff regulation which will be implemented by the government through the Ministry of Communication and Informatics. QFD is a method to translate customer satisfaction into strategic actions. This method  is used in this paper to determine the priorities so that regulations set by the government can answer operators and end users satisfactions. QFD implements matrix approach known as the House of Quality (HOQ). The use of fuzzy logic is intended as an effective method to deal with the high level of subjectivity when using HOQ. In the  first step we will generate a priority scale based on level of importance from the aspects of interests of the operators  using TOPSIS. The aim of employing TOPSIS is  to overcome the gap between the current state and the ideal conditions. In the second step we use the utility factor for determining a ranking of regulation elements. The use of Fuzzy QFD method proves the effectiveness in converting qualitative into quantitative assessment so that the results of the research in this paper can be used by regulators to determining priorities when implementing the new regulations.


Makalah ini mengaplikasikan metode Fuzzy QFD dalam membuat skala prioritas pada butir-butir penyempurnaan regulasi tarif dan interkoneksi yang akan diimplementasikan pemerintah melalui kementerian komunikasi dan informatika. QFD, yang merupakan metode untuk menterjemahkan kepuasan pelanggan ke dalam langkah-langkah strategis penentu kebijakan, digunakan dalam penelitian ini untuk membuat prioritas sehingga diharapkan regulasi yang akan ditetapkan pemerintah menjawab kepentingan-kepentingan pihak penyelenggara maupun pelanggan (end users). QFD menggunakan pendekatan matriks yang lebih dikenal sebagai House of Quality (HOQ). Penggunaan logika fuzzy dimaksudkan sebagai metode yang efektif untuk menangani tingginya tingkat subjektifitas ketika menggunakan HOQ. Dalam langkah pertama, dibuat skala prioritas berdasarkan tingkat kepentingan dari aspek-aspek kepentingan pihak penyelenggara dengan menggunakan TOPSIS dimana tujuan dari penggunaan TOPSIS ini untuk mengatasi gap antara kondisi saat ini dengan kondisi idealnya. Langkah kedua menggunakan faktor utilitas fuzzy untuk perankingan butir-butir regulasi dari pihak regulator. Penggunaan metode Fuzzy QFD terbukti efektif dalam mengkonversi penilaian kualitatif menjadi kuantitatif sehingga hasil dari penelitian dalam makalah ini dapat digunakan oleh regulator untuk menentukan prioritas dalam mengimplementasikan regulasi baru.

Article Details

Section
Informatics

References

Akao, Y. (1990). Quality function deployment : Integrating customer requirements into product design. Cambridge, MA : Productivity Press.

Chan, L. K., & Wu, M. L. (2005). A systematic approach to quality function deployment with a full illustrative example. Omega : The International Journal of Management Sience, 33, 119 – 139.

Chen, C. T. (2000). Extensions of the TOPSIS for group decision making under fuzzy environment. Fuzzy Sets Systems, 114, 1-9.

Chen, L. H., & Weng, M. C. (2006). An evaluation approach to engineering design in QFD processes using fuzzy goal programming models. European Journal of Operational research, 172, 230 – 248.

Chen, L. H., & Weng, M. C. (2003). A fuzzy model for exploiting quality function deployment. Mathematical and Computer Modelling, 38, 559-570.

Chien, C. J., & Tsai, H. H. (2000). Using fuzzy numbers to evaluate perceived service and quality. Fuzzy Sets and Systems, 116, 289-300.

Choen, L. (1995). Quality function deployment : How to make QFD work for you. MA : Addison-Wesley.

Dat, L. Q., Phuong, T. T., Kao, H. P., Chou, S. Y., & Nghia, P. V. (2015). A new integrated fuzzy QFD approach for market segments evaluation and selection. Applied Mathematical Modelling, 39, 3653 – 3665.

Haldar, A., Banerjee, D., Ray, A., & Ghosh, S. (2012). An integrated approach for supplier selection. International Converence on Modelling, Optimization and Computing : Procedia Engineering, 38, 2087-2102.

Hashim, A. M., & Dawal, S. Z. M. (2012). Kano model and QFD integration approach for ergonomic design improvement. Procedia – Social and Behavioral Sciences, 57, 22 – 32.

Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making : Methods and applications : A state of the art survey. Springer Verlag. New York, Vol.13.

Kazancoglu, Y., & Aksoy, M. (2011). A fuzzy logic – based QFD to identify key factors of e-learning design. Procedia – Social and Behavioral Sciences, 28, 322 – 327.

Kim, K. J., Moskowitz, H., Dhingra, A., & Evans, G. (2000). Fuzzy multicriteria models for quality function deployment. European Journal of Operational Research, 121, 504 – 518.

Kusumawardani, R. P., & Agintiara, M. (2015). Application of fuzzy AHP-TOPSIS method for decision making in human resource manager selection process. Procedia Computer Science, 72, 638-646.

Muhardono, A., & Isnanto, R. R. (2014). Penerapan metode AHP dan Fuzzy TOPSIS untuk sistem pendukung keputusan promosi jabatan. Jurnal Sistem Informasi Bisnis, 02, 108-115.

Pan, N. F. (2008). Fuzzy AHP approach for selecting the suitable bridge construction method. Automation in Construction, 17, 958-965.

Purohit, S. K., & Sharma, A. K. (2015). Database design for data mining driven forecasting software tool for quality function deployment. I.J. Information Engineering and Electronic Business, 4, 39 – 50.

Rajesh, G., & Mallinga, P. (2013). Supplier selection based on AHP QFD methodology. Procedia Engineering, 64, 1283 – 1292.

Ramli, K. (2015). Dokumen konsultasi publik : Penyempurnaan regulasi tarif dan interkoneksi, Kementerian Komunikasi dan Informatika.

Revelle, J. B., & Moran, K J. W. (1998). The QFD handbook. New York, NY : John Wiley & Sons.

Shaverdi, M., Heshmati, M. R., & Ramezani, I. (2014). Application of fuzzy AHP approach for financial performance evaluation of Iranian Petrochemical sector. Procedia Computer Science, 31, 995-1004.

Sørensen, C. G., Jørgensen, R. N., Maagaard, J., Bertelsen, K. K., Dalgaard, L., & Nørremark, M. (2009). Conceptual and user – centric design guidelines for a plant nursing robot. Biosystems Engineering, 1, 1-11.

Temponi, C., Yen, J., & Tiamo, W. A. (1999). House of quality : A fuzzy logic - basedrequirements analysis. European Journal of Operational Research, 117, 340 – 354.

Wang, C. H., & Shih, C. W. (2013). Integrating conjoint analysis with quality function deployment to carry out customer-driven concept development for ultrabooks. Computer Standards & Interfaces, 36, 89 – 96.

Wang, Y. M., & Chin, K. S. (2011). Fuzzy analytic hierarchy process : A logarithmic fuzzy preference programming methodology. International Journal of Approximate Reasoning, 52, 541-553.

Zare, H. K., Zarei, M., Sadeghieh, A., & Owlia, M. S. (2010). Ranking the strategic actions of Iran mobile cellular telecommunication using two models of fuzzy QFD. Telecommunications Policy, 34, 747 – 759.

Zadeh, L. (1965). Fuzzy sets. Information and Control, 8, 338-353.