Checking Passport Photos Using Dnn And Facenet Methods As Facial Recognition
Main Article Content
Abstract
Examination of passport photos at this time still uses a manual system or requires human labor. In carrying out inspections, of course, this inspection procedure has several limitations, namely human error because officers also have limited manpower to carry out checks. The aim of this research is can recognize someone's face thougharea face covered by objects or accessories. The method used as face detection vizDNN and methods for facial recognition viz FaceNet. For the results of testing the training model FaceNet has produced the best models with 97.48% accuracy to 5191 test image and for image testing is obtained image accuracy of 97% with test images of 412 and for testing in real time u got the result For normal facial conditions as big 90%, facial condition using glasses as big 83%, condition of the face using a maskas big70%, condition of the face using a hatas big 81% and facial condition using all accessories as big 66%.There forethe system has been running as expected and the methodFaceNet has been able to be implemented in real time on a facial recognition system with the accuracy of facial recognition Very good.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The proposed policy for journals that offer open access
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- Author grant the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
References
Aini, N., & Liliana, D. Y. (2022). Prediksi Gender Berdasarkan Citra Mata Menggunakan Metode Convolutional Neural Network, Inception dan MobileNet. Buletin Poltanesa, 226-232.
Craparotta, G., Thomassey, S., & Biolatti, A. (2019). A siamese neural network application for sales forecasting of new fashion products using heterogeneous data. International Journal of Computational Intelligence Systems, 1537-1546.
E. R., R. S., & Pratama, Y. (2020). Evaluasi Pembangunan Sistem Pakar Penyakit Tanaman Sawit dengan Metode Deep Neural Network (DNN). JURNAL MEDIA INFORMATIKA BUDIDARMA, 1206-1215.
Efanntyo, & Mitra, A. R. (2021). Perancangan Aplikasi Sistem Pengenalan Wajah Dengan Metode Convolutional Neural Network (CNN) Untuk Pencatatan Kehadiran Karyawan. Jurnal Instrumentasi dan Teknologi Informatika, 1-11.
Evelyn, Adipranata, R., & Gunadi, K. (2022). Sistem Presensi Mahasiswa Menggunakan Face Recognition Dengan Metode FaceNet Pada Android. Jurnal Infra, 2-8.
Hasan, R. T., & Sallow, A. B. (2021). Face Detection and Recognition Using OpenCV. Journal of Soft Computing and Data Mining, 86-97.
Jatmoko, C., Setiadi, D. M., Hartanto, D., & Kurniawan, A. F. (2020). Uji Implementasi Algoritma Viola-Jones Dalam Pengenalan Wajah. Dinamik, 68-76.
Megawan, S., & Lestari, W. S. (2020). Deteksi Spoofing Wajah Menggunakan Faster R-CNN dengan Arsitektur Resnet50 pada Video. Jurnal Nasional Teknik Elektro dan Teknologi Informasi, 261-267.
Mujib, K., Hidayatno, A., & Prakoso, T. (2018). ENGENALAN WAJAH MENGGUNAKAN LOCAL BINARY PATTERN (LBP) DAN SUPPORT VECTOR MACHINE (SVM). Transient, 123.
S, A. B., Suma'inna, & Maulana, H. (2018). Pengenalan Citra Wajah Sebagai Identifier Menggunakan Metode Principal Component Analysis (PCA). Jurnal Teknik Informatika, 166-175.
Sakti, D. M., Murti, W. S., Kurniasari, A., & Rosid, J. (2022). Face Recognition Dengan Metode Haar Cascade dan FaceNet. Indonesian Journal of Data and Science, 30-34.
Santoso, A., & Ariyanto, G. (2018). Implementasi Deep Learning berbasis Keras untuk Pengenalan Wajah. Jurnal Teknik Elektro, 15-21.
Sembiring, D. R., Aritonang, M. A., Pane, M. J., Laia, A. D., Waruwu, E., & Azmi, F. (2019). ANALISIS ACCURATE LEARNING BACKPROPAGATION NEURAL NETWORK PADA PENGENALAN WAJAH. Jurnal Mantik Penusa, 70-73.
Weifeng Ge, Huang, W., Dong, D., & R. Scott, M. (2018). Deep Metric Learning with Hierarchical Triplet Loss. CVF, 272-288.
Wita, D. S., & Liliana, D. Y. (2022). Klasifikasi Identitas Dengan Citra Telapak Tangan Menggunakan Convolutional Neural Network (CNN). Jurnal Rekayasa Teknologi Informasi (JURTI), 1.