Kecenderungan Tanggapan Masyarakat Terhadap Vaksin Sinovac Berdasarkan Lexicon Based Sentiment Analysis (The Trend of Public Response to Sinovac Vaccine Based on Lexicon Based Sentiment Analysis)

Main Article Content

Dewi Hernikawati

Abstract

Vaksin sinovac menjadi topik pembicaraan masyarakat sebagai salah satu solusi mencegah infeksi virus Corona. Pada penelitian ini tujuannya adalah melihat tanggapan masyarakat terhadap vaksin Sinovac, apakah sentimen yang diberikan lebih banyak yang positif, netral, atau negatif berdasarkan data Twitter. Dari hasil tersebut dibandingkan dengan tanggapan masyarakat internasional terhadap vaksin Sinovac. Metode Lexicon Based digunakan untuk melakukan analisis sentimen. Hasilnya bahwa opini netral (37.6 %) memiliki prosentase tertinggi jika dibandingkan dengan opini positif (35.4 %) dan opini negatif (27.0 %). Analisis sentimen masyarakat dunia juga mendapatkan hasil yang sama yaitu opini netral (69,4%) lebih dominan dibandingkan opini yang lain. Prosentase opini netral dunia lebih tinggi jika dibandingkan dengan prosentase opini netral di Indonesia. Opini netral menunjukkan bahwa masyarakat tidak mendukung dan tidak menolak dengan adanya vaksin Sinovac

Article Details

Section
Articles

References

A., Vishal, and S.S. Sonawane. 2016. “Sentiment Analysis of Twitter Data: A Survey of Techniques.” International Journal of Computer Applications 139 (11): 5–15. https://doi.org/10.5120/ijca2016908625.

Arsi, Primandani, and Retno Waluyo. 2021. “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM).” Jurnal Teknologi Informasi Dan Ilmu Komputer 8 (1): 147. https://doi.org/10.25126/jtiik.0813944.

Astari, Ni Made Ayu Juli, Dewa Gede Hendra Divayana, and Gede Indrawan. 2020. “Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier.” Jurnal Sistem Dan Informatika (JSI) 15 (1): 27–29. https://doi.org/10.30864/jsi.v15i1.332.

Devika, M. D., C. Sunitha, and Amal Ganesh. 2016. “Sentiment Analysis: A Comparative Study on Different Approaches.” Procedia Computer Science 87: 44–49. https://doi.org/10.1016/j.procs.2016.05.124.

Drus, Zulfadzli, and Haliyana Khalid. 2019. “Sentiment Analysis in Social Media and Its Application: Systematic Literature Review.” Procedia Computer Science 161: 707–14. https://doi.org/10.1016/j.procs.2019.11.174.

Dwitiyanti, Nurfidah, and Noni Selvia. 2021. “Analisis Sentimen Twitter Kebiasaan New Normal.” Seminar Nasional Riset Dan Teknologi Dan Inovasi Teknologi (SEMNAS RISTEK), no. 2020: 832–36. http://proceeding.unindra.ac.id/index.php/semnasristek/article/viewFile/5073/912.

Garcia, Klaifer, and Lilian Berton. 2021. “Topic Detection and Sentiment Analysis in Twitter Content Related to COVID-19 from Brazil and the USA.” Applied Soft Computing 101: 107057. https://doi.org/10.1016/j.asoc.2020.107057.

Hardy, Fathinah Ranggauni. 2020. “Herd Immunity Tantangan New Normal Era Pandemi Covid-19.” Jurnal Ilmiah Kesehatan Masyarakat 12 (2): 55.

John, T. Jacob, and Reuben Samuel. 2000. “Herd Immunity and Herd Effect: New Insights and Definitions.” European Journal of Epidemiology 16 (7): 601–6. https://doi.org/10.1023/A:1007626510002.

Kaur, Chhinder, and Anand Sharma. 2020. “Twitter Sentiment Analysis on Coronavirus Using Textblob.” EasyChair Preprint 2974: 1–10.

Kunal, Sourav, Arijit Saha, Aman Varma, and Vivek Tiwari. 2018. “Textual Dissection of Live Twitter Reviews Using Naive Bayes.” Procedia Computer Science 132 (Iccids): 307–13. https://doi.org/10.1016/j.procs.2018.05.182.

Matulatuwa, Febrilien Matresya, Eko Sediyono, and Ade Iriani. 2017. “Text Mining Dengan Metode Lexicon Based Untuk Sentiment Analysis Pelayanan PT. Pos Indonesia Melalui Media Sosial Twitter.” Jurnal Masyarakat Informatika Indonesia 2 (3): 52–65.

Yanis, Rudelvi Yana. 2018. “Sentiment Analysis of Bpjs Kesehatan Services To Smk Eklesia and Bina Insani Jailolo Teachers.” Jurnal Terapan Teknologi Informasi 2 (2): 25–34. https://doi.org/10.21460/jutei.2018.22.105.

TextBlob : Simplified Text Processing ; https://textblob.readthedocs.io/en/dev/; Diakses 12 April 2021 jam 10.35 WIB

Biro Kerjasama dan Hubungan Masyarakat. “Pengawalan Vaksin CIVID-19 Sesuai Standar Internasional”. Badan POM, 20 Januari 2021, 21:33 WIB. https://www.pom.go.id/new/view/more/berita/20985/Pengawalan-Vaksin-COVID-19-Sesuai-Standar-Internasional.html.

Humas, “Keterangan Pers Presiden RI terkait Vaksin COVID-19”, Sekretariat Kabinet RI, 16 Desember 2020. https://setkab.go.id/keterangan-pers-presiden-ri-terkait-vaksin-covid-19-16-desember-2020-di-istana-merdeka-provinsi-dki-jakarta/

KPCPEN, Situasi COVID-19 di Indonesia, Komite Penanggulangan COVID-19 dan Pemulihan Ekonomi Nasional, 13 April 2021. https://covid19.go.id/p/berita/data-vaksinasi-covid-19-update-13-april-2021

Bayu & Heppy, “Empat tahapan vaksinasi COVID-19, tahap pertama mulai Januari”, Antaranews, 5 januari 2021, 15:06 WIB, https://www.antaranews.com/infografik/1928572/empat-tahapan-vaksinasi-covid-19-tahap-pertama-mulai-januari

Shalihah, Nur Fitriatus , “Simak, Berikut Tingkat Efikasi 7 Vaksin COVID-19”, Kompas, 29 Januari 2021, 16:35 WIB. https://www.kompas.com/tren/read/2021/01/29/163500565/simak-berikut-tingkat-efikasi-7-vaksin-covid-19?page=all

Zein, Rizqy Amelia, “27 Persen Warga Indonesia Ragu Vaksin Covid-19, Bagaimana Meyakinkan Mereka?”, Kompas, 26 Januari 2021, 19:03 WIB. https://www.kompas.com/sains/read/2021/01/26/190300723/27-persen-warga-indonesia-ragu-vaksin-covid-19-bagaimana-meyakinkan-mereka?page=all