Text Mining - Analisis Teks Terkait Isu Vaksinasi COVID-19 (Text Mining - Text Analysis Related to COVID-19 Vaccination Issues)
Main Article Content
Abstract
Sebagai langkah untuk dapat mengurangi penularan COVID-19, pemerintah tengah menggalakkan program vaksinasi sehingga tercapainya herd immunity. Disebabkan kegagalan vaksinasi sebelumnya, sebagian besar masyarakat menolak dengan keras adanya vaksinasi, hal ini sangat disayangkan karena terjadi kegaduhan ditengah–tengah masyarakat. Dalam proses menarik kembali kepercayaan masyarakat, pemerintah mecoba menyebaran luaskan informasi vaksinasi lewat media sosial (instagram), kemudian inilah yang menjadi daya tarik peneliti untuk mengeksplorasi lebih lanjut proses vaksinasi. Dari banyaknya opini masyarakat terdapat beberapa hal yang mungkin masih sulit ditemukan, sebab itulah perlunya analisis teks. Analisis teks dilakukan bertujuan melihat term rangking dan informasi lainnya dengan metode Rule-based Sentiment Analysis. TF-IDF & LSI/LSA adalah jenis metode rule mining yang digunakan dalam penerapan ektrasi informasi. Hasil analisis penelitian ini kemungkinan mempengaruhi informasi lainnya. Seperti analisis persepsi pengguna digunakan untuk melihat gambaran lebih luas tentang isu atau topik pembicaraan penting, serta titik temu permasalahan berkaitan dengan vaksinasi COVID-19.
Article Details
Authors who publish with this journal agree to the following terms:
- Author (s) hold copyrights and retain copyrights of articles if the article is accepted for publishing.
- The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material are distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Public allowed to Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material) this journal article content.
References
Andylibrian. 2021. Sastrawi. PHP. Sastrawi. https://github.com/sastrawi/sastrawi/blob/09db1bda7756fae740767ed7eb8de1b01ae859d5/README.en.md.
Anggraini, Novita, and Heri Suroyo. 2019. “Comparison of Sentiment Analysis against Digital Payment ‘T-cash and Go-pay’ in Social Media Using Orange Data Mining.” Journal of Information Systems and Informatics 1 (2): 152–63. https://doi.org/10.33557/journalisi.v1i2.21.
Bader, Brett W., W. Philip Kegelmeyer, and Peter A. Chew. 2011. “Multilingual Sentiment Analysis Using Latent Semantic Indexing and Machine Learning.” Dalam 2011 IEEE 11th International Conference on Data Mining Workshops, 45–52. Vancouver, BC, Canada: IEEE. https://doi.org/10.1109/ICDMW.2011.185.
Dary, Mochamad Irfan. 2015. “Analisis dan Implementasi Short Text Similarity dengan Metode Latent Semantic Analysis Untuk Mengetahui Kesamaan Ayat al-Quran,” 8.
Fernando, Edward Hanafi, and Hapnes Toba. 2020. “Pemanfaatan Latent Semantic Indexing untuk Mengukur Potensi Kerjasama Jurnal Ilmiah Lintas Universitas.” Jurnal Teknik Informatika dan Sistem Informasi 6 (3). https://doi.org/10.28932/jutisi.v6i3.2894.
Imamah, and Fika Hastarita Rachman. 2020. “Twitter Sentiment Analysis of COVID-19 Using Term Weighting TF-IDF And Logistic Regresion.” 2020 6th Information Technology International Seminar (ITIS), no. COVID-19, analysis sentiment (Oktober). https://doi.org/10.1109/ITIS50118.2020.9320958.
Negara, Edi Surya, Ria Andryani, and Prihambodo Hendro Saksono. 2016. “Analisis Data Twitter: Ekstraksi dan Analisis Data Geospasial.” Jurnal INKOM 10 (1): 27. https://doi.org/10.14203/j.inkom.433.
Pardede, Jasman, and Mira Musrini Barmawi. 2016. “Implementation of LSI Method on Information Retrieval for Text Document in Bahasa Indonesia.” INTERNETWORKING INDONESIA JOURNAL, 8 (1). ISSN 1942-9703.
Qaiser, Shahzad, and Ramsha Ali. 2018. “Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents.” International Journal of Computer Applications 181 (1): 25–29. https://doi.org/10.5120/ijca2018917395.
Rahmalia, Nadiyah. 2020. “Kupas Tuntas Latent Semantic Indexing Agar SEO Sukses.” Glints. 25 September 2020. https://glints.com/id/lowongan/latent-semantic-indexing-adalah/.
Ramli, Fatihah, Shahrul Azman Mohd Noah, and Tri Basuki Kurniawan. 2020. “Using Ontology-Based Approach to Improved Information Retrieval Semantically for Historical Domain.” International Journal on Advanced Science, Engineering and Information Technology 10 (3): 1130. https://doi.org/10.18517/ijaseit.10.3.10180.
Subramanian, Niranjan B. 2019. “Introduction to Bag of Words, N-Gram and TF-IDF | Python.” AI ASPIRANT (blog). 23 September 2019. https://aiaspirant.com/bag-of-words/.
Sutabri, Tata, Agung Suryatno, Dedi Setiadi, and Edi Surya Negara. 2018. “Improving Naïve Bayes in Sentiment Analysis For Hotel Industry in Indonesia.” Dalam 2018 Third International Conference on Informatics and Computing (ICIC), 1–6. Palembang, Indonesia: IEEE. https://doi.org/10.1109/IAC.2018.8780444.
Wonowidjojo, Gilbert, and Michael Sean Hartono. 2016. “Perbandingan Metode Latent Semantic Analysis, Syntactically Enhanced Latent Semantic Analysis, dan Generalized Latent Semantic Analysis dalam Klasifikasi Dokumen Berbahasa Inggris,” 7.