Pengukuran Kualitas Data Menggunakan Framework Total Data Quality Management (TDQM): Studi Kasus Sistem Informasi Beasiswa Universitas Indonesia (Data Quality Assessment Using the TDQM Framework: A Case Study of University of Indonesia (UI) Scholarship Information System)

Isi Artikel Utama

Susilo Hari Cahyono
Yudho Giri Sucahyo

Abstrak

Hingga 2014, sistem beasiswa Universitas Indonesia (UI) mengelola sekitar 12.936 penerima beasiswa dengan dana lebih dari 120 miliar dan jumlah ini terus bertambah setiap tahunnya. Proses pendaftaran melalui beasiswa UI memiliki beberapa masalah, karena ada laporan bahwa mahasiswa yang sudah lulus masih bisa mendaftar untuk mendapatkan beasiswa. Penelitian ini dilakukan untuk mengetahui tingkat kualitas data dalam sistem informasi beasiswa UI. Pengukuran kualitas data dilakukan dengan menggunakan metode Total Data Quality Management (TDQM). Pengukuran kualitas data dalam penelitian ini dilakukan dengan menggunakan dimensi kelengkapan, validitas, akurasi, dan keunikan. Hasil pengukuran memperlihatkan bahwa nomor identitas, nomor ponsel, jenis pelamar, alamat tempat tinggal, jenis identitas, dan pendapatan orang tua memiliki nilai kelengkapan di bawah rata-rata. Data NIK dan nomor rekening bank memiliki nilai validitas di bawah rata-rata. Skor IPK memiliki nilai akurasi di bawah rata-rata. NIK, email, nomor ponsel, dan nomor rekening bank memiliki nilai keunikan di bawah rata-rata. Penelitian ini merekomendasikan agar UI dapat segera mengambil langkah strategis untuk meningkatkan dan mengembangkan kualitas data yang mereka miliki, sehingga data dapat menjadi aset yang bermanfaat dan berharga.

Rincian Artikel

Bagian
Articles

Referensi

Batini, Carlo, Cinzia Cappiello, Chiara Francalanci, and Andrea Maurino. 2009. “Methodologies for Data Quality Assessment and Improvement.” ACM Computing Surveys 41 (3). https://doi.org/10.1145/1541880.1541883.

Bowo, Wahyu Ari, Syukron Ma’mun, Agus Suhanto, Ahmad Nizar Hidayanto, and Meisuchi Naisuty. n.d. “Data Quality Assessment : A Case Study of PT JAS Using TDQM Framework.”

Brackett, M., & Earley, P. S. 2009. The DAMA Guide to The Data Management Body of Knowledge. Technics Publications, LLC Post. https://doi.org/10.1161/CIRCULATIONAHA.108.834176.

Günther, Lisa C., Eduardo Colangelo, Hans-Hermann Wiendahl, and Christian Bauer. 2019. “Data Quality Assessment for Improved Decision-Making: A Methodology for Small and Medium-Sized Enterprises.” Procedia Manufacturing 29: 583–91. https://doi.org/10.1016/j.promfg.2019.02.114.

Hongxun, Tian, and Wang Honggang. 2018. “Data Quality Assessment for On-Line Monitoring and Measuring System of Power Quality Based on Big Data and Data Provenance Theory.” 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), 248–52. https://doi.org/10.1109/ICCCBDA.2018.8386521.

Universitas Indonesia. 2015. “Teknologi Informasi ( IT Master Plan ) Universitas Indonesia Tahun 2015-2019.”

Jiang, Lizheng. 2012. “An Empirical Study on Risk Data Quality Management.” 2012 International Conference on Information Management, Innovation Management and Industrial Engineering 1: 511–14. https://doi.org/10.1109/ICIII.2012.6339714.

Jiang, Lizheng, and Jiantao Zhao. 2012. “An Empirical Study on Risk Data Quality Management.” Proceeding of 2012 International Conference on Information Management, Innovation Management and Industrial Engineering, ICIII 2012 1: 511–14. https://doi.org/10.1109/ICIII.2012.6339714.

Li, Xiao Tong, Jun Zhai, Gui Fu Zheng, and Chang Feng Yuan. 2018. “Quality Assessment for Open Government Data in China.” ACM International Conference Proceeding Series, 110–14. https://doi.org/10.1145/3285957.3285962.

Malange, S N, Ernest Ketcha Ngassam, S O Ojo, and I O Osunmakinde. 2015. “Methodology for Improving Data Quality Management in South African Government Departments.” 2015 IST-Africa Conference, 1–8. https://doi.org/10.1109/ISTAFRICA.2015.7190563.

Mohamed, Azlinah, Nik Abdullah Nik, Abdul Kadir, Yap May-Lin, Shuzlina Abdul Rahman, and Noor Habibah Arshad. 2009. “Data Completeness Analysis in the Malaysian Educational Management Information System.” International Journal of Education and Development Using Information and Communication Technology 5 (2): 106–22.

Muthee, Veronica, Aaron F. Bochner, Allison Osterman, Nzisa Liku, Willis Akhwale, James Kwach, Mehta Prachi, et al. 2018. “The Impact of Routine Data Quality Assessments on Electronic Medical Record Data Quality in Kenya.” PLoS ONE 13 (4): 1–14. https://doi.org/10.1371/journal.pone.0195362.

Pezoulas, Vasileios C., Konstantina D. Kourou, Fanis Kalatzis, Themis P. Exarchos, Aliki Venetsanopoulou, Evi Zampeli, Saviana Gandolfo, et al. 2019. “Medical Data Quality Assessment: On the Development of an Automated Framework for Medical Data Curation.” Computers in Biology and Medicine 107 (March): 270–83. https://doi.org/10.1016/j.compbiomed.2019.03.001.

Sabtiana, Rela. 2018. “Data Quality Management Maturity Model : A Case Study in BPS-Statistics of Kaur Regency , Bengkulu Province , 2017.” 2018 6th International Conference on Cyber and IT Service Management (CITSM), no. Citsm: 1–4. https://doi.org/10.1109/CITSM.2018.8674323.

Vaziri, Reza, Mehran Mohsenzadeh, and Jafar Habibi. 2016. “TBDQ: A Pragmatic Task-Based Method to Data Quality Assessment and Improvement.” PLoS ONE 11 (5): 1–30. https://doi.org/10.1371/journal.pone.0154508.

Wijayanti, Wiluyaningtyas, Achmad Nizar Hidayanto, Nori Wilantika, Infaz Rizki Adawati, and Satrio B. Yudhoatmojo. 2018. “Data Quality Assessment on Higher Education: A Case Study of Institute of Statistics.” 2018 International Seminar on Research of Information Technology and Intelligent Systems, ISRITI 2018, 231–36. https://doi.org/10.1109/ISRITI.2018.8864476.