NEWS TOPIC CLASSIFICATION ON TRIBUNNEWS ONLINE MEDIA USING K-NEAREST NEIGHBOR ALGORITHM

Authors

  • nfn Herman Balai Besar Pengembangan SDM dan Penelitian Komunikasi dan Informatika Makassar Jl. Prof. Abdurrahman Basalamah II No. 25 Telp./Fax: 0411-4660084 http://orcid.org/0000-0001-6431-9481

DOI:

https://doi.org/10.30818/jitu.1.2.1879

Abstract

Online media journalists like tribunnews journalists usually determine the news category when make news input. Unfortunately, often the topic submitted is not in accordance with what is expected by the editor. These errors will make it difficult for news searches by customers. To eliminate these errors, editors can be assisted by an application that able to classify topics. Thus, editors is no longer too dependent on journalist input. This study aims to design applications that able to classify topics based on the texts contained in the news. The method used is the K-Nearest Neighboor algorithm. This design has produced a system that able to classify news topics automatically. To measure the accuracy of the application, several test were carried out by comparing between its results and the results of manual classification by the editor. The tests those carried out with several scenarios produce an accuracy rate of 82%

References

“tribunnews.com,” 2018. [Online]. Available: http://www.tribunnews.com/. [Accessed: 25-Oct-2018].

S. F. E. P. Dimas Bagus Prasetyo, Freddy Arviando, Muhammad Farhan Mubarak, “Klasifikasi berita berdasarkan pendekatan semantik,” in Prosiding Seminar Ilmiah Nasional Komputer dan sistem Intelejen (KOMMIT), 2014, vol. 8, no. Kommit, pp. 201–206.

E. Junianto and D. Riana, “Penerapan PSO Untuk Seleksi Fitur Pada Klasifikasi Dokumen Berita Menggunakan NBC,” vol. 4, no. 1, pp. 38–45, 2017.

A. Rachmat, “Implementasi Metode K-Nearest Neighbor dengan Decision Rule untuk Klasifikasi Subtopik Berita,” J. Inform., vol. 10, no. Juni, pp. 1–15, 2014.

R. W. Muhammad Fakhurrifqi, “Perbandingan Algoritma Nearest Neighbour, C4.5 dan LVQ untuk Klasifikasi Kemampuan Mahasiswa,” Ijccs, vol. 7, no. July, pp. 145–154, 2013.

E. T. L. Kusrini, Algoritma Data Mining. Yogyakarta: Andi Offset, 2009.

D. A. Adeniyi, Z. Wei, and Y. Yongquan, “Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method,” Appl. Comput. Informatics, vol. 12, no. 1, pp. 90–108, 2016.

S. K. Lidya, O. S. Sitompul, and S. Efendi, “Sentiment Analysis Pada Teks Bahasa Indonesia Menggunakan Support Vector Machine ( Svm ),” Semin. Nas. Teknol. dan Komun. 2015, vol. 2015, no. Sentika, pp. 1–8, 2015.

A. D. Arifin, “Implementasi Algoritma K-Nearest Neighbour Yang Berdasarkan One Pass Clustering Untuk Kategorisasi Teks, Implementation of K-Nearest Neighbour Algorithm Based on One Pass Clustering Algorithm for Text Categorization,” Pap. Present. Informatics Eng. RSIf 518.1 Ari i, 2012, pp. 1–7, 2012.

S. Sanjaya and E. A. Absar, “Pengelompokan Dokumen Menggunakan Winnowing Fingerprint dengan Metode K - Nearest Neighbour,” J. CoreIT, vol. 1, no. 2, pp. 50–56, 2015.

Downloads

Published

2018-12-17

Issue

Section

Artikel

How to Cite

NEWS TOPIC CLASSIFICATION ON TRIBUNNEWS ONLINE MEDIA USING K-NEAREST NEIGHBOR ALGORITHM. (2018). Journal of Information Technology and Its Utilization, 1(2), 38-42. https://doi.org/10.30818/jitu.1.2.1879