WEBSITE PHISING DETECTION APPLICATION USING SUPPORT VECTOR MACHINE (SVM)

Authors

  • Diki Wahyudi BBPSDMP Kominfo Makassar
  • Muhammad Niswar Hasanuddin University
  • A. Ais Prayogi Alimuddin

DOI:

https://doi.org/10.56873/jitu.5.1.4836

Keywords:

phishing, machine learning, support vector machine (SVM), ekstraksi fitur, optimasi parameter.

Abstract

Phishing is an act to get someone's important information in the form of usernames, passwords, and other sensitive information by providing fake websites that are similar to the original. Phishing (fishing for important information) is a form of criminal act that intends to obtain confidential information from someone, such as usernames, passwords and credit cards, by impersonating a trusted person or business in an official electronic communication, such as electronic mail or instant messages. Along with the development of the use of electronic media, which is followed by the increase in cyber crime, such as this phishing attack. Therefore, to minimize phishing attacks, a system is needed that can detect these attacks. Machine Learning is one method that can be used to create a system that can detect phishing. The data used in this research is 11055 website data, which is divided into two classes, namely "legitimate" and "phishing". This data is then divided using 10-fold cross validation. While the algorithm used is the Support Vector Machine (SVM) algorithm which is compared with the decision tree and k-nearest neighbor algorithms by optimizing the parameters for each algorithm. From the test results in this study, the best system accuracy was 85.71% using SVM kernel polynomial with values of degree 9 and C 2.5.

References

Natan, Oskar dkk. 2019. “Grid SVM: Aplikasi Machine Learning dalam Pengolahan Data Akuakultur”. Jurnal Rekayasa Elektrika Volume 15 (hlm 7-17). Surabaya: Politeknik Elektronika Negeri Surabaya.

Karima, Inna Sabily. 2014. Optimasi Parameter Pada Support Vector Machine untuk Klasifikasi Fragmen Metagenome Menggunakan Algoritme Genetika. Bogor: Institut Pertanian Bogor.

Halim Z. 2017. “Prediksi Website Pemancing Informasi Penting Phising Menggunakan Support Vector Machine (SVM)”. Information System for Educators and Professionals. 2 (1): 71 – 82

Diani, Rima dkk. 2017. “Analisis Pengaruh Kernel Support Vector Machine (SVM) pada Klasifikasi Data Microarray untuk Deteksi Kanker”. IndonesiaJournal on Computing Volume 2 (hlm. 109-118).

Preethi, V dan Velmayil, G. 2016. “Automated Phishing Website Detection Using URL Features and Machine Learning Technique”. International Journal of Engineering and Technique Volume 5.

Putra, Jan Wira Gotama. 2019. Pengenalan Konsep Pembelajaran Mesin dan Deep Learning.Tokyo: Tokyo Institute of Technology.

Mohammad, Rami M dkk. “Phishing Websites Features”.

Purwiantono, Febry Eka, dan Aris, Tjahyanto. 2017. “Model Klasifikasi untuk Deteksi Situs Phising di Indonesia”. Surabaya: Institut Teknologi Sepuluh Nopember.

Nugroho, Anto Satriyo. 2007. “Pengantar Support Vector Machine”. Jurnal Teknologi.

Erton, M Wiby. 2018. “Support Vector Machine”. Jombang: Universitas KH. A. Wahab Hasbullah.

Downloads

Published

2022-06-30

Issue

Section

Artikel

How to Cite

WEBSITE PHISING DETECTION APPLICATION USING SUPPORT VECTOR MACHINE (SVM). (2022). Journal of Information Technology and Its Utilization, 5(1), 18-24. https://doi.org/10.56873/jitu.5.1.4836