Optimization of K Value in Clustering Using Silhouette Score (Case Study: Mall Customers Data)

Authors

  • Heti Mulyani Politeknik Enjinering Indorama
  • Ricak Agus Setiawan Politeknik Enjinering Indorama, Purwakarta, Indonesia
  • Halimil Fathi Politeknik Enjinering Indorama, Purwakarta, Indonesia

DOI:

https://doi.org/10.56873/jitu.6.2.5243

Keywords:

Cluster, Davies Bouldin Index;, K-Means, Market, Silhouette Score

Abstract

Clustering is an important phase in data mining. The grouping method commonly used in data mining concepts is using K-Means. Choosing the best value of k in the k-means algorithm can be difficult. In this study the technique used to determine the value of k is the silhouette score. Then, to evaluate the k-means model uses the Davies Bouldin Index (DBI) technique. The best DBI value is close to 0. The parameters used are total consumer income and spending. Based on the results of this study it can be concluded that the silhouette score method can provide a k value with optimal results. For mall customer data of 200 data, the most optimal silhouette score is obtained at K = 5 with a DBI = 0.57.

References

J. Ha, M. Kambe, and J. Pe, Data Mining: Concepts and Techniques. 2011. doi: 10.1016/C2009-0-61819-5.

M. Orisa, “Optimasi Cluster pada Algoritma K-Means,” Pros. SENIATI, vol. 6, no. 2, pp. 430–437, 2022, doi: 10.36040/seniati.v6i2.5034.

A. Z. Faridee and V. P. Janeja, “Cluster Quality Analysis Using Silhouette Score. J. o, vol. 15, no. 2, pp. 7–22, 2020.

V. A. Ekasetya and A. Jananto, “Klusterisasi Optimal Dengan Elbow Method Untuk Pengelompokan Data Kecelakaan Lalu Lintas Di Kota Semarang,” J. Din. Inform., vol. 12, no. 1, pp. 20–28, 2020, doi: 10.35315/informatika.v12i1.8159.

Y. Sopyan, A. D. Lesmana, and C. Juliane, “Analisis Algoritma K-Means dan Davies Bouldin Index dalam Mencari Cluster Terbaik Kasus Perceraian di Kabupaten Kuningan,” Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1464–1470, 2022, doi: 10.47065/bits.v4i3.2697.

T. M. Dista and F. F. Abdulloh, “Clustering Pengunjung Mall Menggunakan Metode K-Means dan Particle Swarm Optimization,” J. Media Inform. Budidarma, vol. 6, no. 3, p. 1339, 2022, doi: 10.30865/mib.v6i3.-4172.

D. A. I. C. Dewi and D. A. K. Pramita, “Analisis Perbandingan Metode Elbow dan Silhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,” Matrix J. Manaj. Teknol. dan Inform., vol. 9, no. 3, pp. 102–109, 2019, doi:10.31940/matrix.v9i3.1662.

D. Kurniadi, Y. H. Agustin, H. I. N. Akbar, and I. Farida, “Penerapan Algoritma k-Means Clustering untuk Pengelompokan Pembangunan Jalan pada Dinas Pekerjaan Umum dan Penataan Ruang,” Aiti, vol. 20, no. 1, pp. 64–77, 2023, doi: 10.24246/aiti.v20i1.64-77.

L. F. Marini and C. D. Suhendra, “Penggunaan Algoritma K-Means Pada Aplikasi Pemetaaan Klaster Daerah Pariwisata,” J. Media Inform. Budidarma , vol.7, no. 2, pp. 707–713, 2023, doi: 10.30865/mib.-v7i2.5558.

P. Chapman et al., “Step-by-step Data Mining Guide,” SPSS inc, vol. 78, pp. 1–78, 2000, [Online]. Available: https://www.semanticscholar.org/paper/CRISP-DM-1.0%3A-Step-by-step-data-mining-guide-Chapman-Clinton/54bad20bbc7938991bf34f86dde0babfbd2d5a72%0Ahttp://www.crisp-dm.org/CRISPWP-0800.pdf

A. Rohmah et al., “Analisis Penentuan Hambatan Pembelajaran Daring Dengan Algoritma K-Means 1,” J. Rekayasa Teknol. Nusa Putra, vol. 4, no. 2, pp. 30–35, 2018.

W. M. P. Dhuhita, “Clustering Metode K-Means Untuk Menentukan Status Gizi Balita,” J. Inform., vol. 15, no.2, pp. 160–174, 2015.

D. Jollyta, S. Efendi, M. Zarlis, and H. Mawengkang, “Optimasi Cluster Pada Data Stunting: Teknik Evaluasi Cluster Sum of Square Error dan Davies Bouldin Index,” Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, p. 918, 2019, doi: 10.30645/senaris.v1i0.-100.

R. K. Dinata, H. Novriando, N. Hasdyna, and S. Retno, “Reduksi Atribut Menggunakan Information Gain untuk Optimasi Cluster Algoritma K-Means,” J. Edukasi dan Penelit. Inform., vol. 6, no. 1, p. 48, 2020, doi: 10.26418/jp.v6i1.37606.

S. Butsianto and N. Saepudin, “Penerapan Data Mining Terhadap Minar Siswa dalam Mata Pelajaran Matematika dengan metode K-Means” Angew. Chemie Int. Ed. 6(11), 951–952., vol. 3, no. 1, pp. 10–27, 2018

Downloads

Published

2023-12-25

How to Cite

Mulyani, H., Setiawan, R. A., & Fathi, H. (2023). Optimization of K Value in Clustering Using Silhouette Score (Case Study: Mall Customers Data). Journal of Information Technology and Its Utilization, 6(2), 45–50. https://doi.org/10.56873/jitu.6.2.5243