Optimization of K Value in Clustering Using Silhouette Score (Case Study: Mall Customers Data)
DOI:
https://doi.org/10.56873/jitu.6.2.5243Keywords:
Cluster, Davies Bouldin Index;, K-Means, Market, Silhouette ScoreAbstract
Clustering is an important phase in data mining. The grouping method commonly used in data mining concepts is using K-Means. Choosing the best value of k in the k-means algorithm can be difficult. In this study the technique used to determine the value of k is the silhouette score. Then, to evaluate the k-means model uses the Davies Bouldin Index (DBI) technique. The best DBI value is close to 0. The parameters used are total consumer income and spending. Based on the results of this study it can be concluded that the silhouette score method can provide a k value with optimal results. For mall customer data of 200 data, the most optimal silhouette score is obtained at K = 5 with a DBI = 0.57.
References
J. Ha, M. Kambe, and J. Pe, Data Mining: Concepts and Techniques. 2011. doi: 10.1016/C2009-0-61819-5.
M. Orisa, “Optimasi Cluster pada Algoritma K-Means,” Pros. SENIATI, vol. 6, no. 2, pp. 430–437, 2022, doi: 10.36040/seniati.v6i2.5034.
A. Z. Faridee and V. P. Janeja, “Cluster Quality Analysis Using Silhouette Score. J. o, vol. 15, no. 2, pp. 7–22, 2020.
V. A. Ekasetya and A. Jananto, “Klusterisasi Optimal Dengan Elbow Method Untuk Pengelompokan Data Kecelakaan Lalu Lintas Di Kota Semarang,” J. Din. Inform., vol. 12, no. 1, pp. 20–28, 2020, doi: 10.35315/informatika.v12i1.8159.
Y. Sopyan, A. D. Lesmana, and C. Juliane, “Analisis Algoritma K-Means dan Davies Bouldin Index dalam Mencari Cluster Terbaik Kasus Perceraian di Kabupaten Kuningan,” Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1464–1470, 2022, doi: 10.47065/bits.v4i3.2697.
T. M. Dista and F. F. Abdulloh, “Clustering Pengunjung Mall Menggunakan Metode K-Means dan Particle Swarm Optimization,” J. Media Inform. Budidarma, vol. 6, no. 3, p. 1339, 2022, doi: 10.30865/mib.v6i3.-4172.
D. A. I. C. Dewi and D. A. K. Pramita, “Analisis Perbandingan Metode Elbow dan Silhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,” Matrix J. Manaj. Teknol. dan Inform., vol. 9, no. 3, pp. 102–109, 2019, doi:10.31940/matrix.v9i3.1662.
D. Kurniadi, Y. H. Agustin, H. I. N. Akbar, and I. Farida, “Penerapan Algoritma k-Means Clustering untuk Pengelompokan Pembangunan Jalan pada Dinas Pekerjaan Umum dan Penataan Ruang,” Aiti, vol. 20, no. 1, pp. 64–77, 2023, doi: 10.24246/aiti.v20i1.64-77.
L. F. Marini and C. D. Suhendra, “Penggunaan Algoritma K-Means Pada Aplikasi Pemetaaan Klaster Daerah Pariwisata,” J. Media Inform. Budidarma , vol.7, no. 2, pp. 707–713, 2023, doi: 10.30865/mib.-v7i2.5558.
P. Chapman et al., “Step-by-step Data Mining Guide,” SPSS inc, vol. 78, pp. 1–78, 2000, [Online]. Available: https://www.semanticscholar.org/paper/CRISP-DM-1.0%3A-Step-by-step-data-mining-guide-Chapman-Clinton/54bad20bbc7938991bf34f86dde0babfbd2d5a72%0Ahttp://www.crisp-dm.org/CRISPWP-0800.pdf
A. Rohmah et al., “Analisis Penentuan Hambatan Pembelajaran Daring Dengan Algoritma K-Means 1,” J. Rekayasa Teknol. Nusa Putra, vol. 4, no. 2, pp. 30–35, 2018.
W. M. P. Dhuhita, “Clustering Metode K-Means Untuk Menentukan Status Gizi Balita,” J. Inform., vol. 15, no.2, pp. 160–174, 2015.
D. Jollyta, S. Efendi, M. Zarlis, and H. Mawengkang, “Optimasi Cluster Pada Data Stunting: Teknik Evaluasi Cluster Sum of Square Error dan Davies Bouldin Index,” Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, p. 918, 2019, doi: 10.30645/senaris.v1i0.-100.
R. K. Dinata, H. Novriando, N. Hasdyna, and S. Retno, “Reduksi Atribut Menggunakan Information Gain untuk Optimasi Cluster Algoritma K-Means,” J. Edukasi dan Penelit. Inform., vol. 6, no. 1, p. 48, 2020, doi: 10.26418/jp.v6i1.37606.
S. Butsianto and N. Saepudin, “Penerapan Data Mining Terhadap Minar Siswa dalam Mata Pelajaran Matematika dengan metode K-Means” Angew. Chemie Int. Ed. 6(11), 951–952., vol. 3, no. 1, pp. 10–27, 2018
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Journal of Information Technology and Its Utilization
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The proposed policy for journals that offer open access
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- Author grant the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License