Implementation of K-means Clustering Algorithm to Analyze the Familial Sentiments Towards COVID-19 Vaccination For Elementary School Students in Kalawat District
DOI:
https://doi.org/10.56873/jitu.6.2.5280Keywords:
Clustering; COVID-19; K-Means; VaccinationAbstract
Due to the Ministry of Health's policy, the Indonesian government mandates the public to receive the COVID-19 vaccination as a form of immunity against the coronavirus. This vaccination is not only for adults but also for children of a certain age. Regarding the provision of vaccination for elementary school students aged between 6 to 11 years, the families' responses to this predicament can cause significant barriers to those students being fully vaccinated. Thus, this research developed a web-based application that incorporated the K-means clustering method to group the sentiments of the families into three clusters, namely positive, neutral, and negative. The results showed that the application can identify and cluster the different familial responses from 279 respondents in Kalawat District toward the administration of COVID-19 vaccination to their underage children. The most dominant familial sentiment is positive followed by neutral and negative sentiments with the number of respondents as many as 120 respondents (43%), 113 respondents (41%), and 46 respondents (16%) respectively. This research can help the Health Office in North Minahasa Regency to evaluate public sentiments about vaccination for elementary school students as well as look for better ways to encourage vaccine trust and confidence in this district.
References
Kementerian Kesehatan Republik Indonesia, "Keputusan Menteri Kesehatan Republik Indonesia Nomor HK 01.07/MENKES/6688/2021 Tentang Pelaksanaan Vaksinasi Corona Virus Disease 2019 (COVID-19) Bagi Anak Usia 6 Sampai Dengan 11 Tahun," Kementerian Kesehatan Republik Indonesia, Jakarta, 2021.
Kementerian Kesehatan Republik Indonesia, "Pelaksanaan Vaksinasi Corona Virus Disease 2019 (COVID-19) Bagi Anak Usia 6 (Enam) Sampai Dengan 11 (Sebelas) Tahun," Kementerian Kesehatan, Jakarta, 2021.
J. G. Shim, K. H. Ryu, S. H. Lee, E. A. Cho, Y. J. Lee and J. H. Ahn, "Text Mining Approaches to Analyze Public Sentiment Changes Regarding COVID-19 Vaccines on Social Media in Korea," Int. J. Environ. Res. Public Health, vol. 18, pp. 1-9, 2021.
F. F. Rachman and S. Pramana, "Analisis Sentimen Pro Dan Kontra Masyarakat Indonesia Tentang Vaksin COVID-19 Pada Media Sosial Twitter," Indonesian of Health Info. Manage. J., vol. 8, no. 3, pp. 100-109, 2020.
Zharifah, "Respon Orang Tua Terhadap Siswa Yang Diwajibkan Vaksinasi Covid-19 Di SD IT Mutiara Hati Payakumbuh," JOM FISIP, vol. 10, no. 1, pp. 1-13, 2023.
N. Kurniatillah, F. Hayat and N. Nurjaman, "Pengaruh Peran Orang Tua terhadap Pemberian Vaksinasi Covid 19 di MAN I Kota Serang," Journal of Baja Health, vol. 2, no. 1, p. 18–23, 2022.
F. F. Mailo and L. Lazuardi, "Analisis Sentimen Data Twitter Menggunakan Metode Text Mining Tentang Masalah Obesitas di Indonesia," j. of Inf. Syst. for Public Health, vol. 4, no. 1, p. 2019, 28-36.
L. Kartikawati, K. Kusrini and E. T. Luthfi, "Algoritma K-Means Pada Pengelompokan Pembelajaran Tatap Muka Terbatas Sesudah Vaksinasi COVID-19," J. Eksplora Informatika, vol. 11, no. 1, pp. 20-28, 2021.
M. Yılmaz and M. K. Sahin, "Parents’ Willingness and Attitudes Concerning the COVID-19 Vaccine: A Cross-Sectional Study," The Int. J. of Clinical Health, vol. 75, no. 9, pp. 1-11, 2021.
K. P. Sinaga and M. S. Yang, "Unsupervised K-Means Clustering Algorithm," IEEE Access, vol. 8, pp. 80716-80727, 2020.
R. L. Batu, N. I. Suryani, N. Septia and P. F. Sekaryahya, "Pengaruh Harga Dan Inovasi Layanan Aplikasi Terhadap Keputusan Penggunaan Jasa Taksi Express: Survei Pada Pengunduh Aplikasi Express Taxis," J. Nasional Manajemen Pemasaran & SDM, vol. 1, no. 1, pp. 1-22, 2020.
M. Z. Zhang, X. M. LI, S. B. Yue and L. Q. Yang, "An Empirical Study of Textrank for Keyword Extraction," IEEE Access, vol. 8, pp. 178849-178858, 2020.
S. Sarah and M. Mustakim, "Analisis Penerimaan Vaksin COVID-19 Berbasis Fuzzy Clustering Machine Learning Di Provinsi Riau," JURIKOM (J. Riset Komputer), vol. 8, no. 6, p. Mustakim, 2021.
I. Ha, B. H. Back and B. C. Ahn, "MapReduce Functions to Analyze Sentiment Information from Social Big Data," Int. J. of Distributed Sensor Netw., vol. 11, no. 6, pp. 2-11, 2015.
M. Robani and A. Widodo, "Algoritma K-Means Clustering Untuk Pengelompokan Ayat Al Quran Pada Terjemahan Bahasa Indonesia," JSINBIS (J. Sistem Informasi Bisnis), vol. 6, no. 2, pp. 164-176, 2016.
Anggraini, Novita, E. S. N. Harahap and T. B. Kurniawan, "Text Mining-Text Analysis Related to COVID-19 Vaccination Issues," J. Ilmu Pengetahuan Dan Teknologi Komunikasi, vol. 23, no. 2, pp. 141 - 153, 2021.
E. Farshi , B. Kasmapur and A. Arad, "Investigation of Immune Cells on Elimination of Pulmonary-Infected COVID-19 and Important Role of Innate Immunity, Phagocytes," Rev Med Virol, vol. 31, no. 2, pp. 1-6, 2021.
S. Brandstetter, M. M. Böhmer, M. Pawellek, B. Seelbach-Göbel, M. Melter, M. Kabesch, C. Apfelbacher and KUNO-Kids study group, "Parents’ Intention to Get Vaccinated and to Have Their Child Vaccinated against COVID-19: Cross-Sectional Analyses Using Data from the KUNO-Kids Health Study," Eur J Pediatr, vol. 180, no. 11, pp. 3405-3410, 2021.
S. Lukas and T. Triyani, "Penyuluhan Kesehatan Tentang: Pentingnya Vaksinasi COVID-19 Pada Lansia Di RW.01 Kelurahan Batu Ampar," Berdikari, vol. 3, no. 2, pp. 1-14, 2020.
M. A. Baloch, T. L. Zheng, X. F. Pei and S. Baloch, "The Coronavirus Disease 2019 (COVID-19) Pandemic," Tohoku J. of Exp. Medicine, vol. 250, pp. 271-278, 2020.
Iskak, M. Z. Rusydi, R. Hotauruk, S. Chakim and W. R. Ahmad, "Meningkatkan Kesadaran Masyarakat Tentang Pentingnya Vaksinasi Di Masjid Al – Ikhlas, Jakarta Barat," Pengabdian Dharma Masyarakat (PADMA), vol. 1, no. 3, pp. 222-226, 2021.
T. Surtimanah, H. Hanifah, D. Alfianita, N. Nataria, S. S. Audia, P. Mulyawan and I. N. Sjamsuddin, "Penyuluhan Pencegahan COVID-19 Melalui Video Bagi Masyarakat Perdesaan Dan Perkotaan," AS-SYIFA: J. Pengabdian dan Pemberdayaan Kesehatan Masyarakat, vol. 2, no. 1, pp. 43-54, 2021.
N. Laili and W. Tanoto, "Model Kepercayaan Kesehatan (Health Belief Model) Masyarakat Pada Pelaksanaan Vaksin COVID-19," J. Ilmu. Kesehatan Keperawatan, vol. 17, no. 3, pp. 198-207, 2021.
A. Solichin and K. Khairunnisa, "Klasterisasi Persebaran Virus Corona (COVID-19) Di DKI Jakarta Menggunakan Metode K-Means," Fountain of Inform., vol. 5, no. 2, pp. 52-59, 2020.
L. Maulida, "Penerapan Datamining Dalam Mengelompokkan Kunjungan Wisatawan Ke Objek Wisata Unggulan Di Prov. Dki Jakarta Dengan K-Means," JISKA (J. Informatika Sunan Kalijag), vol. 2, no. 3, p. 167–174, 2018.
J. Wainer and G. Cawley, "Nested Cross-Validation When Selecting Classifiers Is Overzealous for Most Practical Applications," Expert Syst. with Appl/, vol. 182, pp. 1-9, 2021.
Q. M. Liu and L. J. Wang, "T-Test and ANOVA for Data with Ceiling and/or Floor Effects," Behavior Research Methods, vol. 53, p. 264–277, 2021.
J. BPK, "PMK No 10 Tahun 2021 Tentang Pelaksanaan Vaksinasi Dalam Rangka Penanggulangan Pandemi Corona Virus Disease 2019 (COVID-19)," Peraturan Menteri Kesehatan Nomor 10 Tahun 2021, Februari 2021. [Online]. Available: https://peraturan.bpk.go.id/Details/169665/permenkes-no-10-tahun-2021.¬ [Accessed 10 Januari 2023].
G. Tabacchi, G. Battaglia, G. Messina, A. Paoli, A. Palma and M. Bellafiore, "Validity and Internal Consistency of the Preschool-Flat, a New Tool for the Assessment of Food Literacy in Young Children from the Training-to-Health Project," Int J Environ Res Public Health, vol. 17, no. 8, pp. 1-15, 2020.
B. D. Lund and J. X. Ma, "A Review of Cluster Analysis Techniques and Their Uses in Library and Information Science Research: K-Means and k-Medoids Clustering," Performance Measurement and Metrics, vol. 22, no. 3, pp. 161-173, 2021.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Journal of Information Technology and Its Utilization
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The proposed policy for journals that offer open access
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- Author grant the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License