Clustering the Happiness Index of Provincials in Indonesia using K-MEANS
DOI:
https://doi.org/10.56873/jitu.7.2.5854Keywords:
Happiness Level, Cluster, Province, KMeansAbstract
Community welfare is a government goal related to the fulfillment of basic needs, education and employment, which can be measured through the happiness index. The purpose of this research is to cluster provinces in Indonesia based on their resident’s happiness level. The data obtained from the Indonesian Central Bureau of Statistics website. The method used in this research is K-means clustering. There are 2 dimensions used, namely the personal dimension which includes education, employment, household income, health, housing conditions and, assets. The social dimension includes social relations, environmental conditions, security conditions, family harmony, and availability of free time. Based on the results of the study, 2 provincial groups were obtained based on the level of happiness. Testing is done using the Davies Bouldin Index (DBI). The optimal K is obtained, namely K = 2 with a DBI value of = 0.776. The first group is the happiest group including the provinces of North Maluku, Maluku, North Sulawesi, North Kalimantan, Gorontalo, Central Sulawesi, West Papua, Riau Islands, East Kalimantan. The other provinces are in the second group. The unhappiest groups are Banten, Bengkulu and Papua.
References
[1] K. Hamidah and A. Voutama, “Analisis Faktor Tingkat Kebahagiaan Negara Menggunakan Data World Happiness Report dengan Metode Regresi Linier,” Explor. IT J. Keilmuan dan Apl. Tek. Inform., vol. 15, no. 1, pp. 1–7, 2023, doi: 10.35891/explorit.v15i1.3874.
[2] F. O. Dayera and M. B. Palungan, “G-Tech : Jurnal Teknologi Terapan,” G-Tech J. Teknol. Terap., vol. 8, no. 1, pp. 186–195, 2024, [Online]. Available: https://ejournal.uniramalang.ac.id/index.php/g-tech/article/view/1823/1229
[3] A. F. D. Rositawati and I. N. Budiantara, “Pemodelan Indeks Kebahagiaan Provinsi di Indonesia Menggunakan Regresi Nonparametrik Spline Truncated,” J. Sains dan Seni ITS, vol. 8, no. 2, 2020, doi: 10.12962/j23373520.v8i2.45160.
[4] C. F. Palembang, M. Y. Matdoan, and S. P. Palembang, “Perbandingan Algoritma K-Means dan K-Medoids dalam Pengelompokkan Tingkat Kebahagiaan Provinsi di Indonesia,” J. Multidisiplin Ilmu, vol. 01, no. 5, pp. 830–839, 2022, [Online]. Available: https://journal.mediapublikasi.id/index.php/bullet/article/download/1135/550
[5] N. Wayan, R. Damayanthi, N. Luh, P. Suciptawati, K. Jayanegara, and E. N. Kencana, “Pengelompokan Provinsi di Indonesia Menurut Indikator Indeks Kebahagiaan Menggunakan Metode Average Linkage,” Innov. J. Soc. Sci. Res., vol. 3, pp. 8859–8872, 2023.
[6] S. N. Mayasari and J. Nugraha, “Implementasi K-Means Cluster Analysis untuk Mengelompokkan Kabupaten/Kota Berdasarkan Data Kemiskinan di Provinsi Jawa Tengah Tahun 2022,” KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 3, no. 2, pp. 317–329, 2023, doi: 10.24002/konstelasi.v3i2.7200.
[7] F. U. Fitra Ramdhani, “Pengelompokan Provinsi di Indonesia Berdasarkan Karakteristik Kesejahteraan Rakyat Menggunakan Metode K-Means Cluster,” GAUSSIAN, vol. 4, no. 2015, pp. 875–884, 2015.
[8] U. N. U. Y. Yudiana, “Prediksi Customer Churn Menggunakan Metode CRISP-DM pada Industri Telekomunikasi sebagai Implementasi Mempertahankan Pelanggan,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 10, pp. 3571–3579, 2020.
[9] L. Y. Hutabarat, I. Gunawan, I. Purnamasari, M. Safii, and W. Saputra, “Penerapan Algoritma K-Means Dalam Pengelompokan Jumlah Penduduk Berdasarkan Kelurahan Di Kota Pematangsiantar”, IKOMTI (Jurnal Ilmu Komputer dan Teknologi), vol. 2, no. 2, pp. 20–26, 2021.
[10] F. Sandova, R. Kurniawan, and T. Supratati, “Penerapan Data Mining Menggunakan Metode K-Means Clustering pada Penjualan Tas di Asia Toserba Cirebon,” JATI (Jurnal Mhs. Tek. Inform.), vol. 8, no. 1, pp. 245–251, 2024, doi: 10.36040/jati.v8i1.8330.
[11] Y. Sopyan, A. D. Lesmana, and C. Juliane, “Analisis Algoritma K-Means dan Davies Bouldin Index dalam Mencari Cluster Terbaik Kasus Perceraian di Kabupaten Kuningan,” Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1464–1470, 2022, doi: 10.47065/bits.v4i3.2697.
[12] N. A. Maori and E. Evanita, “Metode Elbow dalam Optimasi Jumlah Cluster pada K-Means Clustering,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 14, no. 2, pp. 277–288, 2023, doi: 10.24176/simet.v14i2.9630.
[13] V. A. Ekasetya and A. Jananto, “Klusterisasi Optimal Dengan Elbow Method untuk Pengelompokan Data Kecelakaan Lalu Lintas di Kota Semarang,” J. Din. Inform., vol. 12, no. 1, pp. 20–28, 2020, doi: 10.35315/informatika.v12i1.8159.
[14] M. R. Nahjan, N. Heryana, and A. Voutama, “Implementasi Rapidminer dengan Metode Clustering K-Means untuk Analisa Penjualan pada Toko Oj Cell,” JATI (Jurnal Mhs. Tek. Inform.), vol. 7, no. 1, pp. 101–104, 2023, doi: 10.36040/jati.v7i1.6094.
[15] I. Azhami and R. Fauziah, “Penerapan Rapidminer pada Data Mining Klastering (Kasus: Distribusi Persentase Rumah Tangga Menurut Kabupaten/Kota dan Bahan Bakar untuk Memasak),” KESATRIA J. Penerapan Sist. Inf. (Komputer Manajemen), vol. 1, no. 2, pp. 52–58, 2020, doi: 10.30645/kesatria.v1i2.20.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Information Technology and Its Utilization
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The proposed policy for journals that offer open access
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- Author grant the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License