Analisis Performance Atas Metode Arithmetic Crossover Dalam Algoritma Genetika
Keywords:
Analisis Performance, Arithmetic Crossover, Algoritma Genetika, Kromosom, GenAbstract
Algoritma genetika sering digunakan pada masalah praktis yang berfokus pada pencarian parameter-parameter atau solusi yang optimal. Kelebihan algoritma genetika adalah kemampuan untuk mendapatkan global optima dalam pencarian solusi sehingga sering digunakan dalam optimasi. Salah satu mekanisme yang turut berperan di dalam algoritma genetika adalah proses crossover sebagian dari kromosom induk pertama dengan sebagian kromosom induk kedua lalu menghasilkan kromosom baru. Metode crossover yang akan dianalisis dalam penelitian ini adalah arithmetic crossover dengan studi permasalahan yang digunakan adalah permasalahan Travelling Salesman Problem (TSP). Kromosom offspring (kromosom anak) diperoleh dengan melakukan operasi aritmatika terhadap parent (induk). Algoritma genetika akan berhenti jika sejumlah generasi maksimum tercapai atau level fitness yang ditentukan telah terpenuhi. Tujuan dari penelitian ini adalah mendapatkan hasil analisis performance dari metode arithmetic crossover dengan masalah utama adalah mendapatkan gambaran mengenai kaitan antara jumlah gen di dalam suatu kromosom yang mengalami crossover dengan performance dari algoritma genetika. Hasil penelitian menunjukkan bahwa semakin banyak gen yang mengalami crossover akan meningkatkan performance dari algoritma genetika, yang ditunjukkan dalam bentuk whole arithmetic crossover memiliki performance yang lebih baik daripada simple arithmetic crossover dan simple arithmetic crossover memiliki performance yang lebih baik daripada single arithmetic crossoverReferences
Negnevitsky, Michael. 2005. Artificial Intteligence-A Guide to Intelligent Systems. Addison Wesley: Edinburg
Picek, Stjepan, Jakobovic, Domagoj and Gloub, Marin. 2013. On the Recombination Operator in The Real-Code Genetic Algorithms, 2013 IEEE Congress on Evolutionary Computation, pp. 3103-3110
Russell, Stuart And Norvig, Peter. 2009. Artificial Intelligence: A Modern Approach. 3rd Edition. Pearson Education Limited: London
Konar, Amit. 2005. Computational Intelligence Principles, Techniques, and Applications. Springer: Calcutta, India
Lin, Chu Hsing, Yu, Jui Ling, Liu, Jung Chun, Lai, Wei Shen and Ho, Chia Han. 2009. Genetic Algorithm For Shortest Driving Time in Intelligent Transportation System. Internation Journal of Hybrid Information Technology2(1): 21-30
Samuel, Lukas, Toni, A. dan Willi, Y.. 2005. Penerapan Algoritma Genetika Untuk Salesman Problem Dengan Menggunakan Metode Order Crossover dan Insertion Mutation. Prosiding Seminar Nasional Aplikasi Teknologi Informasi 2005 (SNATI 2005), pp. I-1 – I-5
Annies, Hannawati, Thing, Eleazar. 2002. Pencarian Rute Optimum menggunakan algoritma genetika. Jurnal Teknik Elektro Fakultas Teknologi Industri, Jurusan Teknik Elektro, Universitas Kristen Petra2(2): 78-83
Nasution, K. 2012. Analisis Pemilihan Partially Mapped Crossover Algoritma Genetika pada Penyelelesaian Travelling Salesman Problem. Tesis. Universitas Sumatera Utara
Deep, Kusum & Mebrahtu, Hadush. 2012. Variant of partially mapped crossover for the Travelling Salesman problems. International Journal of Combinatorial Optimization Problems and Informatics3(1): 47-69
Al Kasassbeh, M., Alabadleh, A., & Al-Ramadeen, T. 2012. Shared Crossover Method for Solving Traveling Salesman Problem. International Journal of Intelligent Control and Systems(IJICS)1(6):153-158
Eiben, A.E. & Smith, J.E. 2007. Introduction to Evolutionary Computing Genetic Algorithms. Springer: New York
Goldberg, David E. 1989. Genetic Algorithms. Pearson Education: London
Loohach, Richa dan Garg, Kanwal. 2012. Efffect of Distance Functions on K-Means Clustering Algorithm. International Journal of Computer Application49(6): 7-9
Kumar, Rakesh and Jyotishree. 2012. Blending Roulette Wheel Selection & Rank Selection in Genetic Algorithms, International Journal of Machine Learning and Computing2(4): 365-370
Shaikh, Misba and Panchal, Mahesh. 2012. Solving Asymmetric Travelling Salesman Problem Using Memetic Algorithm, International Journal of Emerging Technology and Advanced Engineering 2(11): 634-639
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- Author grant the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License