Water Circulation Monitoring System in The Vanname Shrimp Cultivation based on Internet of Thing
Main Article Content
Abstract
The cultivation of vaname shrimp is a leading commodity because of several advantages. Some shrimp farmers still practice traditional cultivation which is less effective and efficient in terms of labor and costs. This research was conducted as a solution based on current technology to overcome this problem. The goal is as an alternative to combine microcontroller technology and the IoT so that real-time and objective information is produced when monitoring water circulation in the prototype of vannamei shrimp culture is carried out. The design method of water circulation monitoring hardware and software is adjusted to the needs of the input devices for the three sensors (temperature, pH, and salinity). Microcontroller data processing is sent via synchronization between the wireless sensor network and the web. The results obtained show that the speed of data transmission is in accordance with real-time conditions and is not significantly affected by distance problems, because IoT has brought distant ones closer. Monitoring information also shows the circulation process when the water quality changes from normal conditions. This monitoring can be developed on a broader scale so that it can be an alternative technology with direct benefits for vannamei shrimp farmers.
Article Details
The proposed policy for journals that offer open access
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- Author grant the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
References
Al Barqi, U., Santyadiputra, G. S., & Darmawiguna, I. G. M. (2019). Sistem Monitoring Online Pada Budidaya Udang Menggunakan Wireless Sensor Network dan Internet of Things. Karmapati (Kumpulan Artikel Mahasiswa Pendidikan Teknik Informatika), 8(2), 476–487.
Ardiyanto, L., & Sumiharto, R. (2012). Implementasi Jaringan Sensor Nirkabel Berbasis Xbee Studi Kasus Pemantauan Suhu dan Kelembaban. IJEIS (Indonesian Journal of Electronics and Instrumentation Systems), 2(2), 119–130.
Astria, F., Subito, M., & Nugraha, D. W. (2014). Rancang Bangun Alat Ukur pH dan Suhu Berbasis Short Message Service (SMS) gateway. Universitas Tadulako, Sulawesi Tengah.
Avisena, I. Y., Kurniawan, W., & Ichsan, M. H. H. (n.d.). Monitoring Kualitas Air Tambak dengan Fitur Plug and Play dengan Metode State Machine. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer E-ISSN, 2548, 964X.
Boonsong, W., & Ismail, W. (2014). Wireless Monitoring Of Household Electrical Power Meter Using Embedded Rfid with Wireless Sensor Network Platform. International Journal of Distributed Sensor Networks, 10(6), 876914.
Farras, A., Mahasri, G., & Suprapto, H. (2017). Prevalensi dan Derajat Infestasi Ektoparasit pada Udang Vaname (Litopenaeus vannamei) di Tambak Intensif dan Tradisional di Kabupaten Gresik [Prevalence and Degrees of Infestation Ectoparasite on White Shrimp (Litopenaeus vannamei) in Intensive and Extensive Cultivation System in Gresik]. Jurnal Ilmiah Perikanan dan Kelautan, 9(2), 118–126.
Fuady, M. F., & Nitisupardjo, M. (2013). Pengaruh Pengelolaan Kualitas Air Terhadap Tingkat Kelulushidupan Dan Laju Pertumbuhan Udang Vaname (Litopenaeus vannamei) di PT. Indokor Bangun Desa, Yogyakarta. Management of Aquatic Resources Journal, 2(4), 155–162.
Hudi, L., & Shahab, A. (2005). Optimasi Produktifitas Budidaya Udang Vaname Litopenaeus vannamei dengan Menggunakan Metode Respon Surface dan Non Linier Programming. Surabaya: Institut Teknologi Sepuluh Nopember, 28–1.
Isnawaty, I., Mayangsari, S. A., & Rachman, A. (2016). Sistem Kendali Penerangan Ruangan Untuk Mengurangi Konsumsi Energi Listrik dengan Pemanfaatan Android dan Bluetooth. DINAMIKA: Jurnal Ilmiah Teknik Mesin, 7(2).
Kumar, R. H., Roopa, A. U., & Sathiya, D. P. (2015). Arduino Atmega-328 Microcontroller. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, 3(4), 27–29.
Machzar, A. F., Akbar, S. R., & Fitriah, H. (2018). Implementasi Sistem Monitoring Kualitas Air Pada Budidaya Tambak Udang Dan Bandeng. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer E-ISSN, 2548, 964X.
Mangampa, M., & Suwoyo, H. S. (2016). Budidaya Udang Vaname (Litopenaeus Vannamei) Teknologi Intensif Menggunakan Benih Tokolan. Jurnal Riset Akuakultur, 5(3), 351–361.
Maulana, Y. Y., Wiranto, G., & Kurniawan, D. (2017). Online Monitoring Kualitas Air pada Budidaya Udang Berbasis WSN dan IoT. INKOM Journal, 10(2), 81–86.
Melinda, N., & Suryono, S. (2018). Rancang Bangun Sistem Wireless Sensor Salinitas Model Kapasitif. Youngster Physics Journal, 7(2), 76–84.
Multazam, A. E., & Hasanuddin, Z. B. (2017). Sistem Monitoring Kualitas Air Tambak Udang Vaname. JURNAL IT: Media Infromasi STMIK Handayani Makassar, 8(2), 118–125.
Rozaq, I. A., & DS, N. Y. (2017). Uji Karakterisasi Sensor Suhu DS18B20 Waterproof Berbasis Arduino Uno Sebagai Salah Satu Parameter Kualitas Air. Prosiding SNATIF, 303–309.
Santoso, A. B. (2013). Pembuatan Otomasi Pengaturan Kereta Api, Pengereman, dan Palang Pintu pada Rel Kereta Api Mainan Berbasis Mikrokontroler. Jurnal Ilmiah Teknik Mesin, 1(1).
Sridharan, S. (2014). Water Quality Monitoring System Using Wireless Sensor Network. International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE), 3(4), 399–402.
Wibisono, D. A., Aminah, S., & Maulana, G. (2019). Perancangan Sistem Monitoring Kualitas Air Pada Tambak Udang Berbasis Internet of Things. SNIA (Seminar Nasional Informatika Dan Aplikasinya), 4, B1–5.
Wiranto, G., & Hermida, I. D. P. (2010). Pembuatan Sistem Monitoring Kualitas Air secara Real-Time dan Aplikasinya Dalam Pengelolahan Tambak Udang. Jurnal Teknologi Indonesia, 33(2), 107–113.
Wulandari, T., Widyorini, N., & Purnomo, P. W. (2015). Hubungan Pengelolaan Kualitas Air dengan Kandungan Bahan Organik, NO2 dan NH3 pada Budidaya Udang Vannamei (Litopenaeus vannamei) di Desa Keburuhan Purworejo. Management of Aquatic Resources Journal, 4(3), 42–48.
Maulana, Y.Y., and Wijaya, I. (2015), “Monitoring Kualitas Air secara Real-Time Terintegrasi,” Jurnal Elektronika dan Telekomunikasi, vol. 15, no. 1, pp. 23-27.
Niam, M. S., Akbar, S. R., & Maulana, R. (n.d.). Monitoring Dan Implementasi Sistem Otomasi Real Time Kualitas Air Tambak Menggunakan Web. Jurnal Pengembangan Teknologi Informasį Dan Ilmu Komputer E-ISSN, 2548, 964X.
Pratama, A. S., Efendi, A. H., Burhanudin, D., & Rofiq, M. (2019). Simkartu (Sistem Monitoring Kualitas Air Tambak Udang) Berbasis Arduino dan SMS Gateway. Jurnal SITECH: Sistem Informasi dan Teknologi, 2(1), 121–126
Salfia, E., Azhar, A., & Kamal, M. (2018). Rancang Bangun Alat Pengendalian dan Monitoring Kualitas Air Tambak Udang Berbasis Salinitas dan Kadar Oksigen Terlarut. Jurnal Mahasiswa Teknik Elektro, 2(2).
Yusuf, A. I., Rusdinar, A., & Nugraha, R. (2016). Rancang Bangun Prototipe Kontrol Salinitas Air Tambak Udang Menggunakan Metode Fuzzy dan Jaringan Sensor Nirkabel. EProceedings of Engineering, 3(3).
Zain, R. H. (2013). Sistem Keamanan Ruangan Menggunakan Sensor Passive Infra Red (PIR) Dilengkapi Kontrol Penerangan Pada Ruangan Berbasis Mikrokontroler Atmega 8535 dan Real Time Clock DS1307. Jurnal Teknologi Informasi & Pendidikan, 6(1), 146–162.