Detection of the Types of Consumable Saltwater Fish in the Coastal Area of Likupang Uses the Convolutional Neural Network Method
Main Article Content
Abstract
In the coastal area of Likupang, many types of saltwater fish can be consumed, such as tuna and skipjack. Yet, there are also types of saltwater fish that cannot be consumed or protected by the government, such as Napoleon fish and sea kingfish. Thus, this research aimed to build a desktop application that can automatically classify consumable and non-consumable saltwater fish species more accurately and promptly using a suitable image recognition method like the Convolutional Neural Network (CNN). CNN has abilities to distinguish images by recognizing several pixels in a two-dimensional image and RGB (Red, Green, Blue) colors which are then converted into a matrix with various values, making it easier for the system to recognize the two-dimensional image. By using 40% test data (143 images) and 60% training data (213 images), test accuracy in identifying and classifying images of consumable fish, non-consumable fish, and non-fish images with each percentage of 94%, 98%, and 95% respectively.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The proposed policy for journals that offer open access
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- Author grant the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
References
Angdresey, A., Sitanayah, L., & Kairupan, T. V. (2021). A Soil Monitoring and Recommendation System for Ornamental Plants. 2021 6th International Conference on New Media Studies (CONMEDIA) (pp. 40-45). Tangerang, Indonesia: IEEE.
Awangga, R. M., & Putro, E. C. (2020). Tutorial Gender Classification Using The You Look Only Once (YOLO). Bandung: Kreatif Industri Nusantara.
Coulibaly, S., Kamsu-Foguem, B., Kamissoko, D., Traore, D. (2022). Deep Convolution Neural Network sharing for the multi-label images Classification. Machine Learning with Application, 10, 1-17.
Fouad, M.M.M., Zawbaa, H.M., El-Bendary, N., & Hassanien, A.E. (2013). Automatic Nile Tilapia Fish Classification Approach Using Machine Learning Techniques. 13th International Conference on Hybrid Intelligent Systems (HIS). Tunisia: Gammarth.
Gaba, S., Budhira, I., Kumar, V., Garg, S., Kaddoum, G., & Hassan, M. M. (2022). A Federated Calibration Scheme for Convolutional Neural Networks: Models, Applications and Challenges. Computer Communications, 192, 144-162.
Haar, L. V., Elvira, T., & Ochoa, O. (2022). An analysis of explainability methods for convolutional neural networks. Engineering Applications of Artificial Intelligence, Part A, 117,105606.
Hasan, M., Ullah, S., Khan, M. J., & Khurshidi, K. (June 10-14, 2019). Comparative Analysis Of SVM, ANN, and CNN For Classifying Vegetation Species Using Hyperspectral Thermal Infrared Data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. The Netherlands: Enschede.
Hassan, Y. A. (2020). Hukum Laut Konservasi Sumber Daya Ikan di Indonesia. Jakarta Timur: Prenadamedia Group.
Hibatullah, A. (2019). Penerapan Metode Convolutional Neural Network Pada Pengenalan Pola Citra Sandi Rumput. Bandung: Universitas Komputer Indonesia.
Huang, F., Tan, X., Huang, R., & Xu, Q. (2022). Variational Convolutional Neural Networks Classifiers. Physica A: Statistical Mechanics and its Applications, 605, 128067.
Karlam, A. (2019). Adaptive Moment Estimation Pada Convolutional Neural Network Untuk Pengenalan Motif Kain Batik. Bandung: Universitas Komputer Indonesia.
Kementerian Kelautan dan Perikanan. (2017, November). Direktorat Jenderal Pengelolaan Ruang Laut. Retrieved from Kementrian Kelautan dan Perikanan: https://kkp.go.id/djprl/artikel/709-peraturan- menteri-kelautan-dan-perikanan-no-35-tahun-2013.
Kosasih, R., & Fadila, N. (2019). Klasifikasi Jenis Kendaraan Menggunakan Metode Convolutional Neural Network (CNN). Jurnal Ilmiah Teknologi dan Rekayasa, 24, 3, 207-215.
Kusrini, Luthfi, E. T., & Rahim, A. (2020). Convolutional Neural Network Untuk Klasifikasi Penggunaan Masker. Jurnal Teknologi Informasi dan Komunikasi, 10, 109-115.
Liu, K., Kang, G., Zhang, N., & Hou, B. (2018). Breast Cancer Classification Based on Fully-Connected Layer First Convolutional Neural Networks. IEEE Access, 23722-23732.
Massijaya. (2016). Pengembangan Perikanan, Kelautan dan Maritim untuk Kesejahteraan Rakyat. Bogor: PT. IPB Press.
Pratiwi, H. A., Cahyanti, M., & Lamsani, M. (2021). Implementasi Deep Learning Flower Scanner Menggunakan Metode Convolutional Neural Network. Sebatik, 124-130.
Prasenan, P., & Suriyakala, C. D. (2022). Fish Species Classification Using A Collaborative Technique Of Firefly Algorithm And Neural Network. EURASIP Journal on Advances in Signal Processing, 116, 1-23.
Qin, H., Li, X., Liang, J., Peng, Y., & Zhang. C. (2016). Deepfish: Accurate Underwater Live Fish Recognition With A Deep Architecture. Neurocomputing, 187, 49–58.
Sari, I. R. (2021). Implementasi Convolutional Neural Networks (Cnn) Untuk Klasifikasi Citra Benih Kacang Hijau Berkualitas. Semarang: Universitas Muhammadiyah Semarang.
Salman, A., Siddiqui, S. A., Shafait, F., Mian, A., Shortis, M. R., Khurshid, K., Ulges, A., & Schwanecke, U. (2019). Automatic Fish Detection In Underwater Videos By A Deep Neural Network-Based Hybrid Motion Learning System. ICES Journal of Marine Science, 77, 4, July-August 2020, 1295–1307.
Seo, J. H., & Kwon, D. S. (2017). Learning Similarity Metric For Comparing RGB-D Image Patches by CNN. 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI) (pp. 490-491). Jeju: IEEE.
Villon, S., Mouillot, D., Chaumont, M., Darling, E.S., Subsol, G., Claverie, T., & Villéger, S. (2018). A Deep Learning Method For Accurate And Fast Identification Of Coral Reef Fishes In Underwater Images. Ecological Informatics, 48, 238-244.
Walter, B. (2022). Analysis Of Convolutional Neural Network Image Classifiers In A Hierarchical Max-Pooling Model With Additional Local Pooling. Journal of Statistical Planning and Inference, 224, 109-126.
Wijaya, A. Y., Soelaiman, R., & Suartika, E. P. (2016). Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) Pada Caltech 101. Jurnal Teknik ITS, 5, 1, 65-67.
Wiranata, A., Wibowo, S. A., Patmasari, R., Rahmania, R., & Mayasari, R. (2018). Investigation of Padding Schemes for Faster R-CNN on Vehicle Detection. 2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC) (pp. 208-212). Bandung, Indonesia: IEEE.
Yepez, J., & Ko, S. B. (2020). Stride 2 1-D, 2-D, and 3-D Winograd for Convolutional Neural Networks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 853-863.