Analysis of Geospatial-Based Road Milestone Clustering Using K-Means and Davies-Bouldin Evaluation
Main Article Content
Abstract
Geographic Information System (GIS) has become a very important tool for spatial analysis and decision making in various fields. In this paper, the analysis process of grouping Kilometer Hectometer (KM/HM) road milestones use the K-Means method in the context of GIS. The KM/HM road milestones are road equipment made of concrete or signboards equipped with texts containing information about the distance and the name of the city to be traveled by road users. The length of the road that has such a long distance will make it difficult to maintain and to manage the road milestones that are scattered throughout the road. Currently, the process of mapping the location of the road milestones is still being carried out using the conventional method, in which the survey officer records the data on paper and measures it with the vehicle's odometer. However, this method often causes data loss, errors in determining the location, and lacks photographic evidence as a reference for assessing the condition of the road milestones. The role of GIS for survey officers is to map the road milestones and to visualize the road milestone data. The main objective is to gain meaningful insights from the spatial distribution of these road milestones, which will assist in better navigation and infrastructure planning. The K-Means method separates clusters from KM/HM road milestones which are identified based on geographical proximity. To assess the quality of these clusters, the evaluation is conducted using the Davies-Bouldin index (DBI) which provides a quantitative measure of inter-group similarity and within-group dissimilarity. For officers, it can be useful to find location points for the road milestones that have high damage conditions to prioritize to be repaired first. Based on the test results using DBI, it produces a value close to zero, which is equal to 0.1656, indicating that the clusters formed have very good quality.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The proposed policy for journals that offer open access
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- Author grant the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
References
Batarius, P., Siki, Y. C. H., & others. (2023). Klasterisasi Data Hasil Produksi Pertanian dan Peternakan Provinsi Nusa Tenggara Timur Menggunakan Metode K-Means. Jurnal Informatika Polinema, 9(4), 415–426.
Ika Febryanti, W. O., Sri Adiningsi, & Rizal Adi Saputra. (2023). MENGANALISIS POLA DEFORESTASI HUTAN LINDUNG DI SULAWESI TENGGARA MENGGUNAKAN METODE K-MEANS. Jurnal Informatika Polinema, 10(1), 53–58. https://doi.org/10.33795/jip.v10i1.1455
Jumadi Dehotman Sitompul, B., Salim Sitompul, O., & Sihombing, P. (2019). Enhancement Clustering Evaluation Result of Davies-Bouldin Index with Determining Initial Centroid of K-Means Algorithm. Journal of Physics: Conference Series, 1235(1), 012015. https://doi.org/10.1088/1742-6596/1235/1/012015
Kusbianto, D., Mentari, M., & Syahrin, E. A. (2018). PENERAPAN ALGORITMA K-MEANS CLUSTERING UNTUK MENENTUKAN PEMBAGIAN KELAS SISWA BARU. Seminar Informatika Aplikatif Polinema.
Permen PUPR No. 19/PRT/M/2011 Tahun 2011. (t.t.). Diambil 28 Agustus 2023, dari https://peraturan.bpk.go.id/Home/Details/160044/permen-pupr-no-19prtm2011-tahun-2011
Prabiantissa, C. N., Tri, A. R., & Asmara, R. A. (2017). Sistem Identifikasi Batik Alami Dan Batik Sintetis Berdasarkan Karakteristik Warna Citra Dengan Metode K-Means Clustering. Jurnal Informatika Polinema, 3(2), 26.
Pratama, Y. A., Ririd, A. R. T. H., & Ariyanto, Y. (2018). SISTEM PENGELOMPOKAN WILAYAH RAWAN KECELAKAAN DI KOTA MALANG MENGGUNAKAN METODE CHEBYSHEV DISTANCE K-MEANS STUDI KASUS POLRES MALANG KOTA. Seminar Informatika Aplikatif Polinema.
Prianggoro, F. D., Aji, D. K. P., & Mashudi, I. A. (2020). Implementasi Metode Rapid Centroid Estimation dan K-Means Untuk Klasterisasi Sekolah Berdasarkan Fasilitas (Studi Kasus Sekolah Negeri Kabupaten Malang). Seminar Informatika Aplikatif Polinema.
Putra, Y. P., Yunhasnawa, Y., & Rahutomo, F. (2020). Evaluasi Kmeans Clustering Pada Preprocessing Sistem Temu Kembali Informasi. Seminar Informatika Aplikatif Polinema.
Rahma, I., Arhandi, P. P., & Firdausi, A. T. (2019). Penerapa Metode Hierarchical Clustering Dan K-Means Clustering Untuk Mengelompokkan Potensi Lokasi Penjualan Linkaja. Jurnal Informatika Polinema, 6(1), 15–22.
Rahmadhani, R. H., Rozi, I. F., & Asmara, R. A. (2021). Live K-Means Clustering Pada Wireless Sensor Network Menggunakan Google Maps Api. Seminar Informatika Aplikatif Polinema, 46–52.
Septiani, I. W., Fauzan, Abd. C., & Huda, M. M. (2022). Implementasi Algoritma K-Medoids Dengan Evaluasi Davies-Bouldin-Index Untuk Klasterisasi Harapan Hidup Pasca Operasi Pada Pasien Penderita Kanker Paru-Paru. Jurnal Sistem Komputer dan Informatika (JSON), 3(4), 556. https://doi.org/10.30865/json.v3i4.4055
Singh, A. K., Mittal, S., Malhotra, P., & Srivastava, Y. V. (2020). Clustering Evaluation by Davies-Bouldin Index(DBI) in Cereal data using K-Means. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), 306–310. https://doi.org/10.1109/ICCMC48092.2020.ICCMC-00057
Syaifudin, Y. W., & Irawan, R. A. (2018). Implementasi Analisis Clustering Dan Sentimen Data Twitter Pada Opini Wisata Pantai Menggunakan Metode K-Means. Jurnal Informatika Polinema, 4(3), 189–194.
Waluyo, M. R. E., Saputra, P. Y., & Dien, H. E. (2020). KLASTERISASI WILAYAH TANAH LONGSOR BERDASARKAN DAMPAK WILAYAH DAN GEOGRAFIS MENGGUNAKAN METODE K-MEANS (Studi Kasus: Kabupaten dan Kota di Jawa Timur). Seminar Informatika Aplikatif Polinema.