Sistem Presensi Mahasiswa Menggunakan Fitur Deteksi Wajah Berbasis Cognitive Internet of Things
Isi Artikel Utama
Abstrak
Tindak kecurangan presensi sering kali ditemukan adanya kehadiran palsu dari mahasiswa. Untuk mengatasi hal tersebut, kami menerapkan metode Haar-Like Feature Cascade sebagai dasar dalam membangun sistem presensi wajah berbasis Cognitive Internet of Things (CIoT). System yang diusulkan bekerja dengan merepresentasikan pola intensitas lokal pada citra wajah sehingga akan mengenali mahasiswa walaupun dari berbagai posisi depan. Hasil penelitian ini menunjukkan pengenalan wajah mahasiswa yang presisi yang mampu mengenali wajah dengan baik. Kesimpulan dari penelitian ini adalah metode Haar-like Feature Cascade mampu mendeteksi wajah secara presisi dan dapat dijadikan sebagai dasar pengembangan teknologi presensi mahasiswa berbasis Cognitive Internet of Things.
Rincian Artikel
Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Kebijakan yang diajukan untuk jurnal yang menawarkan akses terbuka
Syarat yang harus dipenuhi oleh Penulis sebagai berikut:- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Commons Attribution License yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).
Referensi
Amylia AR, A., April Liana, D., Maharani, A., Kristianto, B., Ahmad, & Ilham, A. (2023). Sample Face Q.Dsent Database (SFQ2D). Zenodo. https://doi.org/10.5281/zenodo.8378429
Bayaumi, S., Aldayel, A., Alotaibi, M., Aldraihem, M., Alrashed, S., & Alzahrahi, S. (2015). Class attendance system based-on palm vein as biometric information. Journal of Theoretical & Applied Information Technology, 77.
Islam, M. M., Hasan, M. K., Billah, M. M., & Uddin, M. M. (2017). Development of smartphone-based student attendance system. 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), 230–233. https://doi.org/10.1109/R10-HTC.2017.8288945
Kim, M., Xin, Q., Sinha, S., & Orso, A. (2022). Automated test generation for REST APIs: no time to rest yet. Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis, 289–301. https://doi.org/10.1145/3533767.3534401
Mehta, P., & Tomar, P. (2016). An efficient attendance management sytem based on face recognition using Matlab and Raspberry Pi 2. International Journal of Engineering Technology Science and Research IJETSR, 3, 71–78.
Mohamed, B. K. P., & Raghu, C. V. (2012). Fingerprint attendance system for classroom needs. 2012 Annual IEEE India Conference (INDICON), 433–438. https://doi.org/10.1109/INDCON.2012.6420657
Mohandes, M. A. (2017). Class Attendance Management System Using NFC Mobile Devices. Intelligent Automation & Soft Computing, 23(2), 251–259. https://doi.org/10.1080/10798587.2016.1204749
Noor, S. A. M., Zaini, N., Latip, M. F. A., & Hamzah, N. (2015). Android-based attendance management system. 2015 IEEE Conference on Systems, Process and Control (ICSPC), 118–122. https://doi.org/10.1109/SPC.2015.7473570
Pittle, P. (2012). Automated Web Service Inventory Management Software. Grid Computing.
Rahni, A. A. A., Zainal, N., Zainal Adna, M. F., Othman, N. E., & Bukhori, M. F. (2015). Development of the online student attendance monitoring system (SAMSTM) based on QR-codes and mobile devices. Journal of Engineering Science and Technology, 10(Spec. Issue 2 on UKM Teaching and Learning Congress 2013, May 2015), 28–40.
Rjeib, H. D., Ali, N. S., Al Farawn, A., Al-Sadawi, B., & Alsharqi, H. (2018). Attendance and information system using RFID and web-based application for academic sector. International Journal of Advanced Computer Science and Applications, 9(1), 266–274. https://doi.org/10.14569/IJACSA.2018.090137
Yusof, Y. W. M., Nasir, M. A. M., Othman, K. A., Suliman, S. I., Shahbudin, S., & Mohamad, R. (2018). Real-time internet based attendance using face recognition system. International Journal of Engineering and Technology(UAE), 7(3), 174–178. https://doi.org/10.14419/ijet.v7i3.15.17524
Zainal, N. I., Sidek, K. A., & Gunawan, T. S. (2016). Portable anti forgery recognition for attendance system using fingerprint based biometric. ARPN Journal of Engineering and Applied Sciences, 11(1), 396–403.