Perbandingan Akurasi Prediksi Kerusakan CPU Antara Teknik Certainty Factor dan Forward Chaining

Isi Artikel Utama

Tri Ginanjar Laksana
Ade Rahmat Iskandar
Wan Nooraishya Wan Ahmad

Abstrak

CPU memainkan peran penting dalam menentukan kinerja sistem komputer dalam komputasi kontemporer. Jika CPU mengalami kerusakan, hal ini dapat mengakibatkan gangguan signifikan pada fungsi komputer. Penelitian ini menyajikan teknik komputasi yang bertujuan untuk meningkatkan akurasi prediksi kerusakan CPU. Sistem ini memanfaatkan pengetahuan dasar diagnosis kerusakan dan divalidasi melalui evaluasi 11 gejala awal kerusakan yang sering terlihat. Pendekatan Certainty Factor dan Forward Chaining memastikan kerusakan CPU dengan mengukur tingkat kebenaran kesimpulan pendapat ahli melalui perbandingan gejala kerusakan. Algoritma kedua menilai tingkat kepercayaan dalam suatu pengembangan dengan mempertimbangkan bobot yang diberikan pada sistem oleh dua pihak: pengguna dan ahli. Algoritma yang disarankan menghasilkan akurasi rata-rata pendekatan faktor kepastian dalam mendiagnosis kerusakan komputer menggunakan sistem yang dibangun. Sistem diagnostik memiliki tingkat presisi sebesar 84,9%, yang menunjukkan bahwa 9 dari 10 diagnosis yang dibuat oleh sistem selaras dengan diagnosis yang dibuat oleh pakar. Selanjutnya hasil pengujian algoritma forward chaining. Semua pertanyaan tentang gejala dijawab dengan positif, kecuali satu tes yang memberikan respon negatif. Didapatkan total 39 diagnosa dengan nilai rata-rata 82,9%. Temuan penelitian menunjukkan bahwa metode faktor kepercayaan yang disarankan lebih cocok untuk digunakan dalam sistem tertanam atau aplikasi berbasis web, namun terkendala oleh rendahnya pemrosesan.

Rincian Artikel

Bagian
Informatika

Referensi

Aisa, S. (2021). System Weaning Food Product Using Forward Chaining Method. In 3rd International Conference on Cybernetics and Intelligent Systems, ICORIS 2021. https://doi.org/10.1109/ICORIS52787.2021.9649643

Awad, M. A. (2021). An Efficient Modified Genetic Algorithm for Integrated Process Planning-Job Scheduling. In 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference, MIUCC 2021 (pp. 319–323). https://doi.org/10.1109/MIUCC52538.2021.9447610

Boyacı, A. Ç. (2022). Pandemic hospital site selection: a GIS-based MCDM approach employing Pythagorean fuzzy sets. Environmental Science and Pollution Research, 29(2), 1985–1997. https://doi.org/10.1007/s11356-021-15703-7

Büyüközkan, G. (2021). A combined hesitant fuzzy MCDM approach for supply chain analytics tool evaluation. Applied Soft Computing, 112. https://doi.org/10.1016/j.asoc.2021.107812

Çalık, A. (2021). A novel Pythagorean fuzzy AHP and fuzzy TOPSIS methodology for green supplier selection in the Industry 4.0 era. Soft Computing, 25(3), 2253–2265. https://doi.org/10.1007/s00500-020-05294-9

Chinnam, N. B. (2022). Universally Accessible Structural Data on Macromolecular Conformation, Assembly, and Dynamics by Small Angle X-Ray Scattering for DNA Repair Insights. In Methods in Molecular Biology (Vol. 2444, pp. 43–68). https://doi.org/10.1007/978-1-0716-2063-2_4

Fajriani, F. (2023). A comparison between forward chaining-certainty factor and forward chaining-Dempster Shafer methods for ear, nose, and throat (ENT) expert system. In AIP Conference Proceedings (Vol. 2609). https://doi.org/10.1063/5.0124207

Fitri, Z. E. (2023). Combination of forward chaining and certainty factor methods for the early detection of Acute Respiratory Infections (ARI). Engineering and Applied Science Research, 50(4), 316–323. https://doi.org/10.14456/easr.2023.34

Garcia, M. B. (2021). Virtual Dietitian: A Nutrition Knowledge-Based System Using Forward Chaining Algorithm. In 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies, 3ICT 2021 (pp. 309–314). https://doi.org/10.1109/3ICT53449.2021.9581887

Ghadikolaei, S. S. (2023). A CFD modeling of heat transfer between CGNP Eco-friendly nanofluid and the novel nature-based designs heat sink: Hybrid passive techniques for CPU cooling. Thermal Science and Engineering Progress, 37. https://doi.org/10.1016/j.tsep.2022.101604

Ghasemi, S. E. (2021). Design optimization and experimental investigation of CPU heat sink cooled by alumina-water nanofluid. Journal of Materials Research and Technology, 15, 2276–2286. https://doi.org/10.1016/j.jmrt.2021.09.021

Gou, J. (2021). Knowledge Distillation: A Survey. International Journal of Computer Vision, 129(6), 1789–1819. https://doi.org/10.1007/s11263-021-01453-z

Goyal, S. (2021). Sustainable production and consumption: analysing barriers and solutions for maintaining green tomorrow by using fuzzy-AHP–fuzzy-TOPSIS hybrid framework. Environment, Development and Sustainability, 23(11), 16934–16980. https://doi.org/10.1007/s10668-021-01357-5

Hafizal, M. T. (2022). Implementation of expert systems in potassium deficiency in cocoa plants using forward chaining method. In Procedia Computer Science (Vol. 216, pp. 136–143). https://doi.org/10.1016/j.procs.2022.12.120

Hirata, H. (2021). Reducing the Repairing Penalty on Misspeculation in Thread-Level Speculation. In ACM International Conference Proceeding Series (pp. 39–45). https://doi.org/10.1145/3468081.3471120

Issa, U. (2022). Hybrid AHP-Fuzzy TOPSIS Approach for Selecting Deep Excavation Support System. Buildings, 12(3). https://doi.org/10.3390/buildings12030295

Khan, S. (2022). Transformers in Vision: A Survey. ACM Computing Surveys, 54(10). https://doi.org/10.1145/3505244

Khan, S. A. (2021). A knowledge-based experts’ system for evaluation of digital supply chain readiness. Knowledge-Based Systems, 228. https://doi.org/10.1016/j.knosys.2021.107262

Khatari, M. (2021). Multidimensional Benchmarking Framework for AQMs of Network Congestion Control Based on AHP and Group-TOPSIS. International Journal of Information Technology and Decision Making, 20(5), 1409–1446. https://doi.org/10.1142/S0219622021500127

Li, H. (2021). A failure analysis of floating offshore wind turbines using AHP-FMEA methodology. Ocean Engineering, 234. https://doi.org/10.1016/j.oceaneng.2021.109261

Messing, A. (2021). Forward Chaining Hierarchical Partial-Order Planning. In Springer Proceedings in Advanced Robotics (Vol. 17, pp. 364–380). https://doi.org/10.1007/978-3-030-66723-8_22

Mittal, S. (2022). A Survey of Deep Learning on CPUs: Opportunities and Co-Optimizations. IEEE Transactions on Neural Networks and Learning Systems, 33(10), 5095–5115. https://doi.org/10.1109/TNNLS.2021.3071762

Naryanto, R. F. (2022). Development of a mobile expert system for the diagnosis on motorcycle damage using forward chaining algorithm. Indonesian Journal of Electrical Engineering and Computer Science, 27(3), 1601–1609. https://doi.org/10.11591/ijeecs.v27.i3.pp1601-1609

Pagano, A. (2021). A Decision Support System Based on AHP for Ranking Strategies to Manage Emergencies on Drinking Water Supply Systems. Water Resources Management, 35(2), 613–628. https://doi.org/10.1007/s11269-020-02741-y

Plancher, B. (2021). Accelerating Robot Dynamics Gradients on a CPU, GPU, and FPGA. IEEE Robotics and Automation Letters, 6(2), 2335–2342. https://doi.org/10.1109/LRA.2021.3057845

Putri, T. E. (2021). Expert system for digital single lens reflex (DSLR) camera recommendation using forward chaining and certainty factor. In AIP Conference Proceedings (Vol. 2329). https://doi.org/10.1063/5.0042292

Putro, M. D. (2022). A Fast CPU Real-Time Facial Expression Detector Using Sequential Attention Network for Human-Robot Interaction. IEEE Transactions on Industrial Informatics, 18(11), 7665–7674. https://doi.org/10.1109/TII.2022.3145862

Rogulj, K. (2021). Knowledge-based fuzzy expert system to the condition assessment of historic road bridges. Applied Sciences (Switzerland), 11(3), 1–43. https://doi.org/10.3390/app11031021

Roh, Y. (2021). A Survey on Data Collection for Machine Learning: A Big Data-AI Integration Perspective. In IEEE Transactions on Knowledge and Data Engineering (Vol. 33, Issue 4, pp. 1328–1347). https://doi.org/10.1109/TKDE.2019.2946162

Roy, P. K. (2023). A credit scoring model for SMEs using AHP and TOPSIS. International Journal of Finance and Economics, 28(1), 372–391. https://doi.org/10.1002/ijfe.2425

Sathyan, R. (2023). An integrated Fuzzy MCDM approach for modelling and prioritising the enablers of responsiveness in automotive supply chain using Fuzzy DEMATEL, Fuzzy AHP and Fuzzy TOPSIS. Soft Computing, 27(1), 257–277. https://doi.org/10.1007/s00500-022-07591-x

Satria, A. (2022). Application of the Certainty Factor and Forward Chaining Methods to a Cat Disease Expert System. In 2022 3rd International Conference on Artificial Intelligence and Data Sciences: Championing Innovations in Artificial Intelligence and Data Sciences for Sustainable Future, AiDAS 2022 - Proceedings (pp. 83–88). https://doi.org/10.1109/AiDAS56890.2022.9918803

Shahbazian, N. (2022). Identification of geometric and mechanical factors predictive of bird-beak configuration in thoracic endovascular aortic repair using computational models of stent graft deployment. JVS-Vascular Science, 3, 259–273. https://doi.org/10.1016/j.jvssci.2022.05.056

Unal, Y. (2022). Sustainable supplier selection by using spherical fuzzy AHP. Journal of Intelligent and Fuzzy Systems, 42(1), 593–603. https://doi.org/10.3233/JIFS-2191214

Younes, A. (2022). Spatial suitability analysis for site selection of refugee camps using hybrid GIS and fuzzy AHP approach: The case of Kenya. International Journal of Disaster Risk Reduction, 77. https://doi.org/10.1016/j.ijdrr.2022.103062

Zhao, Y. (2022). Preoperative systemic inflammatory response index predicts long-term outcomes in type B aortic dissection after endovascular repair. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.992463

Zhu, G. N. (2022). A fuzzy rough number extended AHP and VIKOR for failure mode and effects analysis under uncertainty. Advanced Engineering Informatics, 51. https://doi.org/10.1016/j.aei.2021.101454