Analisis Semiotika Makna Nasionalisme melalui Text Mining pada Media Sosial Twitter di Kejuaraan AFF Tahun 2020

Main Article Content

Jeanie Annissa
Atik Ariesta

Abstract

This study visualises semiotic analysis of the meaning of nationalism in the 2020 ASEAN Football Federation championship using the constructivist paradigm. The primary data were collected through non-participant observation using Text Mining techniques with the help of a rapid miner. The method of this research consists of several stages including text processing and the use of the K-Means clustering technique to obtain data groupings that have similarities. Furthermore, the results of clustering were analyzed using the theory of semiotic triangle meaning Charles S. Peirce. The results showed that the sign includes texts that have the full meaning of nationalism or the teachings of love for the homeland. Sentences tweeted on Twitter social media are divided into state symbols represented by words such as national team as many as 22653 words, PSSI as many as 5097 words, and garuda with 1170 words. The attitude of nationalism is represented by words such as enthusiasm as many as 1893 words, fighting as many as 982 words, supporting as many as 11747 words, proud as many as 612 words, and hope as many as 506 words. Meanwhile, the cluster evaluation shows that 17 of the 28 available clusters have interpretations of nationalism values that emphasize texts that contain an attitude of national spirit through the 2020 AFF Cup final match.

Article Details

Section
Articles

References

Arifin, Muhammad. 2020. “Implementasi Data Mining Pada Prediksi Pemesanan Menggunakan Algoritma Apriori (Studi Kasus : Kimia Farma).” Jurnal Pelita Informatika 8 (3): 353–56.

Aziz, Muhammad Ilham. 2021. “Representasi Nasionalisme Dalam Film Sultan Agung: Tahta, Perjuangan Dan Cinta (2018).” Imaji 12 (3): 104–11.

Fatmawati, Kiki, and Agus Perdana Windarto. 2018. “Data Mining: Penerapan Rapidminer Dengan K-Means Cluster Pada Daerah Terjangkit Demam Berdarah Dengue (DBD) Berdasarkan Provinsi.” CESS (Journal of Computer Engineering System and Science) 3 (2): 173–78. https://doi.org/10.24114/cess.v3i2.9661.

Hardi, Wishnu, Wisnu Ananta Kusuma, and Sulistyo Basuki. 2019. “Pengelompokan Topik Dokumen Berbasis Text Mining Dengan Algoritme K-Means : Studi Kasus Pada Dokumen Kedutaan Besar Australia Jakarta.” Visi Pustaka 21 (1): 67–76.

Jumeilah, Fithri Selva. 2017. “Penerapan Support Vector Machine (SVM) Untuk Pengkategorian Penelitian.” Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi) 1 (1): 19–25. https://doi.org/10.29207/resti.v1i1.11.

Librian, Andy. 2015. “Kata Dasar, Github.Com.” https://github.com/sastrawi/sastrawi/tree/master/data.

Miner, Gery, John Elder, Thomas Hill, Dursun Delen, Andrew Fast, and Robert A Nisbet. 2012. Practical Text Mining And Statistical Analysis for Non-Structured Text Data Applications. Netherlands: Elsevier Science. https://doi.org/https://doi.org/10.1016/C2010-0-66188-8.

Moleong. 2017. Metodologi Penelitian Kualitatif. Bandung: PT. Remaja Karya.

Prabancono, Haryo. 2015. “Perilaku Netizen: Inilah 3 Karakter Pengguna Twitter Indonesia.” Solopos.Com. 2015.

Purnomo, Alfian Cholis. 2018. “Analisis Semiotika Terhadap Penggunaan Emoticon Whatsapp Dalam Komunikasi Interpersonal Antar Mahasiswa Ilmu Komunikasi Angkatan 2013.” Universitas Muhammadiyah Surakarta.

Putri, Kenny Monica Kemal, Andi Alimuddin Unde, and Muhammad Nadjib. 2015. “Semiotika Pesan Instagram Ani Yudhoyono Dalam Perspektif Etika Komunikasi.” Jurnal Komunikasi KAREBA 4 (1): 19–26.

Riyad Fadhli, Nurrul, Taufik Taufik, Dona Sandy Yudasmara, Eldiene Zaura I’tamada, Rida Hanania, and Ricky Setya. 2022. “Representasi Kebudayaan Lokal Dan Nasionalisme Pada Maskot Pon XX Papua 2020: Analisis Semiotika Charles Sanders Peirce.” BRAVO’S 10 (4): 315–24. https://doi.org/10.32682/bravos.v10i4/2729.

Trajd, Sok Kana. 2021. “Indonesia Stopwords, Github.Com.” https://github.com/SokKanaTorajd/indonesia-stopwords.

Yasir, Risaleh Abie, Syukur Kholil, and Nabila Yasmin. 2022. “Representation Of Nationalism In Wonderland Indonesia Video Clip (Charles Sanders Peirce Semiotic Analysis).” International Journal of Cultural and Social Science (IJCSS) 3 (2): 402–9.

Yulian, Eko. 2018. “Text Mining Dengan K-Means Clustering Pada Tema LGBT Dalam Arsip Tweet Masyarakat Kota Bandung.” Jurnal Matematika MANTIK 4 (1): 53–58. https://doi.org/10.15642/mantik.2018.4.1.53-58.