Geographical Information System for Mapping Flood-Prone Areas in Manado City Using the K-Means Clustering Method

Authors

  • Aurelia Koagouw Universitas Katolik De La Salle Manado
  • Debby Paseru Universitas Katolik De La Salle Manado
  • Indah Kairupan Universitas Katolik De La Salle Manado

DOI:

https://doi.org/10.56873/jitu.7.1.5403

Keywords:

Flood; K-Means Clustering; Geographic Information System

Abstract

Floods are natural events or phenomena that can cause environmental damage, loss of property, psychological effects, and death or casualties. One way to control flooding non-structurally is by mapping areas that are prone to flooding. This study builds a geographic-based information system to map flood-prone areas in Manado City using the K-Means Clustering algorithm. The main objective of this research is to identify and map areas with a high risk of flooding using spatial data. Slope, land cover type, soil type, water discharge (discharge), and rainfall are independent variables that will be used and processed using the K-Means Clustering algorithm. There are four clusters in the mapping results of flood-prone areas, namely: high vulnerability, medium vulnerability, low vulnerability, and not vulnerable. By using the K-Means method, the results obtained are Paal Dua and Wenang sub-districts are high-vulnerability groups, followed by Mapanget, Tuminting, and Singkil subdistricts with medium vulnerability groups. Tikala District is the only area with low vulnerability. Meanwhile, Bunaken, Sario, Wanea, and Malayayang sub-districts are areas that are not potentially prone to flooding.

References

I. Kairupan, Z. Y. Huang, H. C. Chang, and C. W. Chang, “Emergency Navigation and Alarm with Flooding Models - A Real Case Study Of Manado City,” in 2016 International Conference on Communication Problem-Solving, ICCP 2016, Taiwan: IEEE, 2016, pp. 1–2. Doi: 10.1109/Iccps.2016.7751120.

H. Rakuasa, J. K. Helwend, and D. A. Sihasale, “Pemetaan Daerah Rawan Banjir di Kota Ambon Menggunakan Sistem Informasi Geografis,” Jurnal Geografi, Media Informasi Pengembangan dan Profesi Kegeografian, Vol. 19, No. 2, 2022, Doi: 10.15294/Jg.V19i2.34240.

P. F. Opit, I. Y. Kairupan, and F. M. Rusuh, “A Milp Model for Water Level Sensor Placement with Multi-Sensor and Multi-Disaster Areas,” J. Tek. Ind., Vol. 22, No. 2, 2021, Doi: 10.22219/Jtiumm.Vol 22. No 2.185-195.

R. A. Kurniawan. “Sistem Informasi Geografis Pemetaan Daerah Potensi Rawan Banjir dengan Metode K-Means Clustering (Studi Kasus: Kabupaten Jombang)”. Skripsi. Universitas Bhayangkara Surabaya. 2023.

I. Faturohim and A. Baita, “Penerapan Algoritma K-Means Clustering untuk Mengelompokkan Kerawanan Rob di Daerah Pekalongan,” Juti “Jurnal Teknol. Informasi,” Vol. 1, No. 1, 2022, Doi: 10.26798/Juti.V1i1.624.

R. Aprillina, A. Nurlifa, A. Haryoko, R. E. Putri, and A. N. Rosalita, “Clustering Daerah Rawan Banjir di Kabupaten Tuban dengan K-Means Disertai Visualisasi,” Curtina Comput. Sci. Or Inform. J., Vol. 1, No. 1, Pp. 40–51, 2022.

N. N. Adisanjaya, A. Kusuma, and I. G. N. M. Nugraha, “Pemetaan Zonasi Daerah Rawan Banjir di Denpasar Bali Dengan Metode K-Means Clustering,” J. Media Sains, 2021.

A. F. Aslamsyah, Y. A. Pranoto, and R. P. P, “Sistem Informasi Geografis Daerah Hortikultura (Sayuran) Kabupaten Malang,” Jati (Jurnal Mhs. Tek. Inform., Vol. 4, No. 2, 2020.

K. P. Sinaga and M. S. Yang, “Unsupervised K-Means Clustering Algorithm,” IEEE Access, Vol. 8, 2020, Doi: 10.1109/Access.2020.2988796.

B. Lund and J. Ma, “A Review of Cluster Analysis Techniques and Their Uses in Library and Information Science Research: K-Means and K-Medoids Clustering,” Perform. Meas. Metrics, Vol. 22, No. 3, 2021, Doi: 10.1108/Pmm-05-2021-0026.

N. P. G. Qur’ani, D. Harisuseno, and J. S. Fidari, “Studi Pengaruh Kemiringan Lereng terhadap Laju Infiltrasi,” J. Teknol. dan Rekayasa Sumber Daya Air, Vol. 2, No. 1, 2022, Doi: 10.21776/Ub.Jtresda.2022.002.01.19.

A. Yusuf, D. I. Kusumastuti, and E. P. Wahono, “Pengaruh Tutupan Lahan terhadap Base Flow Index Das Way Seputih Provinsi Lampung,” Siklus J. Tek. Sipil, Vol. 7, No. 2, 2021, Doi: 10.31849/Siklus.V7i2.7323.

A. Anwari and M. Makruf, “Pemetaan Wilayah Rawan Bahaya Banjir di Kabupaten Pamekasan Berbasis Sistem Informasi Geografis (Sig),” Netw. Eng. Res. Oper., Vol. 4, No. 2, Pp. 117–123, 2019, Doi: 10.21107/Nero.V4i2.127.

G. Genesiska, M. Mulyono, and A. Intan Yufantari, “Pengaruh Jenis Tanah terhadap Pertumbuhan dan Hasil Tanaman Jagung (Zea Mays L.) Varietas Pulut Sulawesi,” Plantropica J. Agric. Sci., Vol. 5, No. 2, 2020, Doi: 10.21776/Ub.Jpt.2020.005.2.2.

Sarmidi and Sidik Ibnu Rahmat, “Sistem Peringatan Dini Banjir Menggunakan Sensor Ultrasonik Berbasis Arduino Uno,” J. Manaj. dan Tek. Inform., Vol. 02, No. 01, pp. 181–190, 2018.

W. S. Aji, “Simulasi Dengan Multi Agent Prediksi Banjir Berdasarkan Intensitas Hujan Menggunakan Particle Swarm Optimization,” J. Teknol. Inf., Vol. 5, No. 2, 2019.

T. S. Pratiwi and H. C. Chotimah, “Aktivitas Diplomasi Digital dalam Manajemen Bencana: Studi Kasus di Daerah Istimewa Yogyakarta, Indonesia dan Fukushima, Jepang,” J. Stud. Diplomasi dan Keamanan, Vol. 13, No. 1, 2021, Doi: 10.31315/Jsdk.V13i1.4367.

D. Hariyanto, et al., “Implementasi Metode RAD pada Sistem Informasi Perpustakaan”, Jurnal Penelitian Ilmu dan Teknologi Komputer (JUPITER), Vol. 13, No. 1, pp. 110–117, 2021.

Downloads

Published

2024-06-30

Issue

Section

Artikel

How to Cite

Geographical Information System for Mapping Flood-Prone Areas in Manado City Using the K-Means Clustering Method. (2024). Journal of Information Technology and Its Utilization, 7(1), 1-7. https://doi.org/10.56873/jitu.7.1.5403