Prediction of the Community Welfare in North Wangurer Village Using Multiple Linear Regression

Main Article Content

Liza Wikarsa
Steven Pandelaki
Karen Sumajouw

Abstract

The level of social welfare in a country can determine the quality and condition of the country itself. North Wangurer sub-district is in Madidir District, Bitung City, with a population of around 750 households. The level of community welfare in this sub-district is solely based on the monthly income obtained from each community which is regarded to be ineffective. Thus, this research aimed to predict the level of community welfare at this sub-district using the multiple linear regression method. It was hoped that this research could provide insights for the North Wangurer sub-district office to make more effective policies/decisions to increase the level of welfare in hope of eradicating poverty and equitably distributing social assistance to the targetted households. There were four independent variables employed in this research such as income, education, occupation, and the number of family members. Meanwhile, the dependent variable was the level of community welfare consisting of Pra-KS, KS-I, KS-II, KS-III, and KS-III Plus as acknowledged by BKKBN. The results revealed that the level of community welfare for the North Wangurer sub-district was in Prosperous Family III Plus (Level 5). Most of the families (98,7%) in this sub-district can meet all basic needs, social psychology and its development, and self-accountability (self-esteem).

Article Details

Section
Informatics
Author Biographies

Liza Wikarsa, Universitas Katolik De La Salle Manado

Informatics Engineering Study Programmee

Faculty of Engineering

 

Steven Pandelaki, Universitas Katolik De La Salle Manado

Informatics Engineering Study Programme

Faculty of Engineering

Universitas Katolik De La Salle Manado

Karen Sumajouw, Universitas Katolik De La Salle Manado

Informatics Engineering Study Programme

Faculty of Engineering

Universitas Katolik De La Salle Manado

References

Afkarina, N. K., Widodo, A. W., & Furqon, M. T. (2019). Implementasi Regresi Linear Berganda Untuk Prediksi Jumlah Peminat Mata Kuliah . Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 3(11), 10462-10467.

Alfarizi, A. D., & Andri. (2021). Pemanfaatan Data Mining Dalam Memprediksi Produksi Pada PT Pupuk Sriwidjaja Palembang Menggunakan Metode Multiple Linear Regression. JNIK, 2(1), 51-63.

Amanda, L., Yanuar, F., & Devianto, D. (2019). Uji Validitas Dan Realibitas Tingkat Partisipasi Politik Masyarakat Kota Padang. Jurnal Matematika UNPAD, 8(1), 179 – 188.

Astuti, Adyatma, S., & Normelani, E. (2017). Pemetaan Tingkat Kesejahteraan Keluarga Di Kecamatan Banjarmasin Selatan. Jurnal Pendidikan Geografi, 4(2), 20-34.

BKKBN. (2011). Batasan dan Pengertian MDK. Retrieved from BKKBN Pemutakhiran Data Keluarga: http://aplikasi.bkkbn.go.id/mdk/BatasanMDK.aspx

Budiastuti, D., & Bandur, A. (2018). Validitas Dan Reliabilitas Penelitian. Jakarta: Mitra Wacana Media.

Cugung, P. D. (2020, Mei). Klasifikasi Keluarga Menurut 5 Tahapan Keluarga. Retrieved from Sistem

Informasi Desa Cugung: https://cugung-rajabasa.desa.id/artikel/2020/5/8/klasifikasi-keluarga-menurut-5-tahapan-keluarga

Hayuningtyas, R. Y., & Sari, R. (2022). Implementasi Data Mining Dengan Metode Multiple Linear Regression Untuk Memprediksi Penyakit Diabetes. Jurnal Teknik Komputer AMIK BSI, 8(1), 40-44.

Herwanto, H. W., Widyaningtyas, T., & Indriana, P. (2019). Penerapan Algoritma Linear Regression untuk Prediksi Hasil Panen Tanaman Padi. JNTETI, 8(4), 364-370.

Iskandar, Hartoyo, Sumarwan, U., & Khomsan, A. (2010). Faktor – Faktor Yang Mempengaruhi Kesejahteraan Keluarga. Jurnal Departemen Gizi Masyarakat Fakultas, 5(3), 63-72.

Izzah, A., & Widyastuti, R. (2017). Prediksi Harga Saham Menggunakan Improved Multiple Linear Regression Untuk Pencegahan Data Outlier. KINETIK, 2(3),141-150.

Kaluku, M. R., & Pakaya, N. (2020). Penerapan Metode AHP-Topsis Untuk Mengukur Tingkat Kesejahteraan Masyarakat Pesisir. ILKOM Jurnal Ilmiah, 12(3), 191-199.

Kamal, I. L., Hendro, T., & Ilyas, R. (2017). Prediksi Penjualan Buku Menggunakan Data Mining. Seminar Nasional Teknologi Informasi dan Multimedia 2017 (pp. 49-54). Yogyakarta: STMIK AMIKOM Yogyakarta.

Marbun, M., Sihotang, H. T., & Nababan, M. A. (2018). Perancangan Sistem Peramalan Jumlah Wisatawan Asing. Manajemen dan Informatika Komputer, 2(1), 41-49.

Masawah, P. D. (2018, Mei 18). Tingkat Kesejahteraan Keluarga dan Indikator Tahapan Keluarga Sejahtera. Retrieved from Masawah Desa: https://masawah.desa.id/2018/05/30/tingkat-kesejahteraan-keluarga-dan-indikator-tahapan-keluarga-sejahtera/

Nofriani. (2020). Machine Learning Application for Classification Prediction of Household’s Welfare Status. Journal of Information Technology and Computer Engineering, 4(2), 72-82.

Sulardi, P., Hendro, T., & Umbara, F. R. (2017). Prediksi Kebutuhan Obat Menggunakan Regresi Linier. Seminar Nasional Teknologi dan Informatika (SNATIF) (pp. 57-62). Kudus, Jawa Tengah: Fakultas Teknik, Universitas Muria Kudus.

Zahra, R., & Rina, N. (2018). Pengaruh Celebrity Endorser Hamidah Rachmayanti Terhadap Keputusan Pembelian Produk Online Shop Mayoutfit Di Kota Bandung. Lontar: Jurnal Ilmu Komunikasi, 6(1), 43-57.